Math 411 Individual Homework 2

Jack Madden

September 2023

Problem 1

a)

$$
1001 = 6 \cdot 163 + 23
$$

$$
163 = 7 \cdot 23 + 2
$$

$$
23 = 11 \cdot 2 + 1
$$

$$
2 = 2 \cdot 1 + 0
$$

$$
gcd(163, 1001) = 1, 78 \cdot 1001 - 479 \cdot 163 = 1
$$

b)

$$
2023 = 3 \cdot 629 + 136
$$

$$
629 = 4 \cdot 136 + 85
$$

$$
136 = 1 \cdot 85 + 51
$$

$$
85 = 1 \cdot 51 + 34
$$

$$
51 = 1 \cdot 34 + 17
$$

$$
34 = 2 \cdot 17 + 0
$$

$$
gcd(2023, 629) = 17, 14 \cdot 2023 - 45 \cdot 629 = 17
$$

Problem 2

- a) False, $15 \mid 3 \cdot 5$ but $15 \nmid 3$ and $15 \nmid 5.$
- b) True, if a | b, then $ak = b$ for some $k \in \mathbb{Z}$. So then $ak | c$, meaning that for some $m \in \mathbb{Z}$, $(ak)m = c$. We suggestively rewrite this as $a(km) = c$. Since $km \in \mathbb{Z}, a \mid c.$
- c) PrimeQ[314159265358979] in Mathematica returned False.

d) If a | b and b | a, $ak = b$, $b\ell = a$ for some $k, \ell \in \mathbb{Z}$. Then:

$$
ak = b
$$

$$
(b\ell)k = b
$$

$$
b(\ell k) = b
$$

$$
\ell k = 1
$$

Since $k, \ell \in \mathbb{Z}$, the only possible solutions to this equation are $k = 1, \ell = 1$ or $k = -1, \ell = -1$. Since $b\ell = a$ and ℓ can take on either -1 or $1, a = \pm b$.

e) This is true. We will perform this proof using the Euclidean algorithm. For Fibonacci numbers F_n, F_{n-1} , we see that $F_n = 1 \cdot F_{n-1} + F_n - 2$. So we see that in this recursive way the Euclidean algorithm would reverse the Fibonacci sequence like this:

$$
(F_n, F_{n-1}) \to (F_{n-1}, F_{n-2}) \to (F_{n-2}, F_{n-3}) \cdots \to (F_1, F_0)
$$

, where $F_1 = 1, F_0 = 0$. At this point the algorithm would terminate and return 1 as the gcd. This makes any consecutive Fibonacci numbers F_n, F_{n-1} coprime.

Problem 3

- a) First, we must prove reflexivity. We may represent a as $nk + r$ where $k \in \mathbb{Z}$ and r is a mod n. We see that a clearly has the same r as itself and is therefore congruent to itself.
- b) Second, we must prove symmetry. We assume that $a \equiv b \mod n$. We may represent a as $nk_1 + r$ and b as $nk_2 + r$ where $k_1, k_2 \in \mathbb{Z}$. We can see that a also has the same remainder r as b , so congruence is symmetric.
- c) Third, we must prove transitivity. We assume $a \equiv b \mod n$, and $b \equiv c \mod n$ n. Thus, $a = nk_1 + r$, $b = nk_2 + r$, $c = nk_3 + r$, $k_1, k_2, k_3 \in \mathbb{Z}$. We observe that a and c have the same remainder r. Thus, congruence is also transitive.

Problem 4

a)
$$
\begin{array}{r|rrrr}\n & 1 & 5 \\
\hline\n & 5 & 5 & 1\n\end{array}
$$
\n
$$
\begin{array}{r|rrrr}\n * & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\n 1 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline\n 2 & 2 & 4 & 6 & 1 & 3 & 5 \\
\hline\n 3 & 3 & 6 & 2 & 5 & 1 & 4 \\
\hline\n 4 & 4 & 1 & 5 & 2 & 6 & 3 \\
\hline\n 5 & 5 & 3 & 1 & 6 & 4 & 2 \\
\hline\n 6 & 6 & 5 & 4 & 3 & 2 & 1\n\end{array}
$$

Problem 5

We construct an isomorphism $f : \mathbb{Z}_6 \to \mathbb{Z}_7^*$ as follows:

We construct the table for \mathbb{Z}_7^* such that the structural similarity can be seen

Problem 6

First, we will prove that a group isomorphism $f : G \rightarrow G'$ must map the identity of G to the identity of G' . We will do this by contradiction. Assume $f(e) = a' \neq e'.$ Then: $f(z) = f(z)$

$$
f(ee) = f(e)f(e)
$$

$$
f(e) = f(e)f(e)
$$

$$
a' = a' \cdot a'
$$

$$
a'^{-1} \cdot a' = a^{-1} \cdot a' \cdot a'
$$

$$
e' = e' \cdot a'
$$

$$
e' = a'
$$

So we have a contradiction and have proven that the isomorphism must map the first group's identity to the other.

Assume that a group isomorphism $f : \mathbb{Z}_8^* \to \mathbb{Z}_4$ exists. It is easily shown by looking at the multiplication table for \mathbb{Z}_8^* that for any $a \in \mathbb{Z}_8^*$, $a \cdot a = 1$. Since f is an isomorphism and therefore a bijection, there must exist $x \in \mathbb{Z}_8^*$ such that $f(x) = 1$. So then:

$$
f(xx) = f(x) + 4 f(x)
$$

$$
f(1) = f(x) + 4 f(x)
$$

$$
0 \neq 1 + 4 1 = 2
$$

So this isomorphism f cannot exist and therefore the groups are not isomorphic.

Problem 7

We assume an isomorphism $f: \mathbb{Q} \to \mathbb{Z}$ We note that any odd $k \in \mathbb{Z}$ must be mapped to by f as an isomorphism is a bijection. Let $f(x) = k$ for some odd k. So then:

$$
f\left(\frac{x}{2} + \frac{x}{2}\right) = f\left(\frac{x}{2}\right) + f\left(\frac{x}{2}\right) = 2 \cdot f\left(\frac{x}{2}\right) = k
$$

Since k is odd, we observe that $f\left(\frac{x}{2}\right)$ is not an integer and thus f is not a valid map from $\mathbb Q$ to $\mathbb Z$. So no isomorphism may exist.

Problem 8

I'm bad at Mathematica but I wrote a program in C++ using backtracking that output the Latin squares and output the right number, 2, 12, and 576 for 2, 3, 4 respectively in C++ and output them in the Mathematica array format: https://pastebin.com/6UzmNJE9

Problem 9

We know that $\mathbb{Z}_n^* = \{k \in \mathbb{Z}_n | gcd(k,n) = 1\}$. So a group G such that $\mathbb{Z}_n^* \subset$ $G \subset \mathbb{Z}_n$ would require that G contain at least one element m such that $gcd(m, n)$ 1. Let $gcd(m, n) = a > 1$. Then, for $c, d \in \mathbb{Z}$, $ac = m$, $ad = n$. We will show that the presence of m in G is problematic as it violates the group axiom requiring inverses for all elements.

It is clear that the identity element for any group \mathbb{Z}_n^* is 1. Assume an inverse exists for m. This means that there exists $\gamma \in G$ such that $m\gamma \mod n = 1$. We can write this equivalently as $m\gamma = n\sigma + 1$ for some $\sigma \in \mathbb{Z}$. Algebraically we rewrite this as:

$$
m\gamma - n\sigma = 1
$$

$$
ac\gamma - ad\sigma = 1
$$

$$
a(c\gamma - d\sigma) = 1
$$

$$
c\gamma - d\sigma = \frac{1}{a}
$$

. We know that $\frac{1}{a} \notin \mathbb{Z}$ as $a > 1$ and that $c\gamma - d\sigma \in \mathbb{Z}$. So here we have a contradiction and see that no inverse exists for a potential additional element m , and so no group G with the given constraints can exist.

Problem 10

a) First, we prove that L_a is injective. Assume that $c, d \in G$. We then assume $L_a(c) = a \cdot c = a \cdot d = L_a(d)$. Simple algebra gives $a^{-1} \cdot a \cdot c = a^{-1} \cdot a \cdot d$ and then $c = d$. Thus $L_a(c) = L_a(d)$ implies $c = d$ and L_a is injective.

Second, we prove that L_a is surjective. For any $y \in G$, we can construct an x such that $L_a(x) = a \cdot x = y$. This is $x = (a^{-1} \cdot y)$ as $a \cdot (a^{-1} \cdot y) =$ $(a \cdot a^{-1}) \cdot y = e \cdot y = y$. So L_a is surjective.

Since L_a is surjective and injective it is a bijection.

x	$L_3(x)$	
1	3	
2	6	
3	9	
4	1	
5	4	
6	7	
7	10	
8	2	
9	5	
10	8	
x	$L_2(x)$	
1	2	
2	1	
c)	3	5
4	6	
5	3	
6	4	