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Problem 1

To find all generators in Z∗
17, we note that Z16 is isomorphic to it under the map 3x. We have that

the generators in Z16 are those numbers which are coprime to 16, which are 1, 3, 5, 7, 9, 11, 13,
15. These generators will be isomorphic to the generators in Z∗

17, so we therefore have generators
3, 10, 5, 11, 14, 7, 12, 6.

Problem 2

We try to find

22
17

mod 19 = 2131072 mod 19

Fermat’s little theorem gives us that 218 is 1 mod 19. Thus, we now have

22
17

mod 19 = 2131072 mod 19 = 218
7281

mod 19 · 214 mod 19 = 214 mod19

We then have that this is equal to

27 mod 19 · 27 mod 19 = 14 · 14 mod 19 = 196 mod 19 = 6

Problem 3

We can apply Euler’s theorem to help solve this problem as 5 and 18 are relatively prime. We have

ϕ(18) = 6

and thus
51000 mod 18 = (((56)166 mod 18) · (54 mod18)) mod 18

Then by Euler’s theorem, 56 is 1 modulo 18 which gives us:

51000 mod 18 = 54 mod 18

which is just 13.
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Problem 4

We have:
21x = 6 mod 57

We divide this equation by the gcd of 21 and 57, 3, to get

7x = 2 mod 19

Since 7 and 19 are coprime, 7 has a multiplicative inverse in Z19, specifically 11.

11 · 7x = 2 · 11 mod 19

x = 3 mod 19

Thus, we have that the solutions for our original equation are the numbers which are 3 modulo 19
in Z57, which are 3, 22, and 41.

Problem 5

Take a to be a unit in R with a−1 being its multiplicative inverse. Take b to be a non-unit in R. We
will show by contradiction that neither ab nor ba can be a unit. Suppose ab is a unit. Then, we have
c such that (ab)c = 1. Using the fact that a is a unit gives us bc = a−1, and then bca = 1 But then
b clearly has an inverse b−1 = ca, and we claimed that it was not a unit. This is a contradiction.
Taking bac = 1, we reach the same contradiction, where b−1 = ac.

Problem 6

If an element x ∈ Zp is its own inverse, we have that

x2 = 1

x2 − 1 = 0

(x+ 1)(x− 1) = 0

Since Zp is an integral domain, we have that either (x + 1) or (x − 1) equal to zero. This is only
true for x = 1,−1 and −1 ≡ p− 1. Thus, this gives us that 1, p− 1 are the only elements that are
their own inverses.

Problem 7

Let’s examine the product 2 · 3 · · · p− 2 = (p− 2)!. We know that the only elements that are their
own inverse are 1, p− 1. Thus, we have that for any a ∈ [2, p− 2], a−1 ̸= a and a−1 ∈ [2, p− 2]. We
also have that |[2, p− 2]| = p− 3, which will be an even number if p is an odd prime. Thus, since
Zp is an integral domain and therefore commutative, we can rewrite (p− 2)! mod p as:

(1 · 1−1) · (2 · 2−1) · · · ((p− 2) · (p− 2)−1) = 1 · 1 · · · · 1 = 1 mod p

From here, we can see that:

(p− 1)! mod p = (p− 1) · ((p− 2)! mod p = (p− 1) · 1 mod p = p− 1 ≡ −1
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Problem 8

Let (a, b), (c, d), (e, f) ∈ K. Then:

((a, b) + (c, d)) + (e, f) = (ad+ bc, bd) + (e, f) = (f(ad+ bc) + ebd, bdf) = (adf + bcf + ebd, bdf)

(a, b) + ((c, d) + (e, f)) = (a, b) + (cf + ed, df) = (b(cf + ed) + adf, bdf) = (adf + bcf + ebd, bdf)

Thus we have shown that addition of fraction is associative in field of fractions.

Problem 9

Problem 10

To prove that this is an integral domain, we have to show that there are no zero divisors.
The field of fractions of {n+mi|n,m ∈ Z} is all pairs {(a+ bi, n+mi) ∈ Z with either n or m

not equal to zero. It is isomorphic to the subfield described under the map ϕ((x, y)) = x
y . We show

that this map is a bijection first. First, if

ϕ ((a+ bi, c+ di)) =
a+ bi

c+ di
=

w + xi

y + zi
= ϕ ((w + xi, y + zi))

which then gives us:
a+ bi

c+ di
=

w + xi

y + zi

(a+ bi)(y + zi) = (w + xi)(c+ di)

which is the condition for equality in field of fractions, showing us that the function is injective.
Likewise, the function is surjective as for any a+bi

c+di we can just choose ϕ((a+bi, c+di)). The function
also follows the homomorphism properties, as the process of adding fractions in complex numbers
and obtaining a common denominator is the same as adding fractions in a field of fractions. The
same equivalence follows for multiplication.
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