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Problem 1

Take polynomials anx
n + · · · + a0, bmxm + · · · + b0, ckx

k + · · · + c0, ∈ R[x] and without loss of
generality let m ≥ k. Then, we have:

(anx
n + · · ·+ a0) · (bmxm + · · ·+ b0 + ckx

k + · · ·+ c0)

(anx
n + · · ·+ a0) · ((bm + cm)xm + · · ·+ (bk + ck)x

k + · · · (b0 + c0))

(anx
n + · · ·+ a0) ·

(
m∑
i=0

(bi + ci)x
i

)

anx
n ·

(
m∑
i=0

(bi + ci)x
i

)
+ · · ·+ a0 ·

(
m∑
i=0

(bi + ci)x
i

)
(

m∑
i=0

an(bi + ci)x
i+n

)
+ · · ·+

(
m∑
i=0

a0(bi + ci)x
i

)
By the distributivity of R we have:(

m∑
i=0

anbix
i+n + ancix

i+n

)
+ · · ·+

(
m∑
i=0

a0bix
i + aicix

i

)

Splitting and rearranging the sums:(
m∑
i=0

anbix
i+n + · · ·+

m∑
i=0

a0bix
i

)
+

(
k∑

i=0

ancix
i+n + · · ·+

k∑
i=0

a0cix
i

)
(
anx

n
m∑
i=0

bix
i + · · ·+ a0

m∑
i=0

bix
i

)
+

(
anx

n
k∑

i=0

cix
i + · · ·+ a0

k∑
i=0

cix
i

)
(
(anx

n + · · ·+ a0) ·
m∑
i=0

bix
i

)
+

(
(anx

n + · · ·+ a0) ·
k∑

i=0

cix
i

)
((anx

n + · · ·+ a0) · (bmxm + · · ·+ b0)) + ((anx
n + · · ·+ a0) + (ckx

k + · · ·+ c0))
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Problem 2

a) By the rational roots test, we know that the roots of this polynomial are either 1, or -1. Neither
of these are roots so this polynomial has no roots in Q.

b) We can solve this problem using the quadratic formula.

c) The zeroes of this equation will be all x ∈ Z5 such that x5 = 1. By Fermat’s little theorem, we
have that x5 = x mod 5 for all x ∈ Z. Thus, we can see that the only zero is therefore 1.

d) Using some facts about complex numbers that are outside of the content of this course we see

that we are finding the fifth roots of unity of 1, which are 1, ei
2π
5 , e−i 2π

5 , ei
4π
5 , e−i 4π

5 . Since there
are at most 5 roots, and we have found 5 roots, we have found them all.

Problem 3

a) Take two non-zero polynomials a, b in R[x] and let them have degrees k and m. Then the
leading term of a · b will be (ak · bm)xk+m. We know that ak, bm ̸= 0 because we stated that the
polynomials have degree k and m. Thus, since R is an integral domain their product will not be
zero, and therefore the product of the two non-zero polynomials will have at least one non-zero
term and therefore will not be zero. Thus, R[x] is an integral domain.

b) Continuing from the previous argument, we see that the product of two non-zero polynomials
in an integral domain a, b will have degree deg(a)+deg(b). Since the unity in R[x] has degree 0,
we can only multiply two polynomials of degree zero, i.e. constant polynomials to get the unit.
Furthermore, these constant polynomials must have coefficients which are units in R.

Problem 4
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x6 + 3x5 + 4x2 − 3x+ 2 = (5x4 + 5x2 + 6x)(3x2 + 2x− 3) + (x+ 2).

Problem 5

After brute-forcing the numbers 1 through 10, we find that the polynomial has zeros at 3, 4, and 8.
These will then be our linear factors. (x− 3)(x− 4)(x− 8), but we must multiply by 2 as leading
coefficient has 2 term. This yields 2(x− 3)(x− 4)(x− 8)/

Problem 6

a) We apply the rational root test and see that rational roots will be one of the following, 1, 2, 4,
8, -1, -2, -4, -8. We can plug them in and see that none work. Then, since the polynomial is of
degree 3, having no roots implies that the polynomial is irreducible.

b) We can apply Eienstein’s criterion, take p = 3.

c) Observe that this polynomial is same as (x+ 1)5 + 3. We perform a linear change of basis and
see that this will have the same reducibility as x5 + 3, which is irreducible under Eisenstein’s
criterion for p = 3.

Problem 7

We have that there are (p− 1)p2 total quadratic polynomials in Zp[x], as for ax
2 + bx+ c ∈ Zp[x],

there are p − 1 ways to choose a (cannot be 0), and p ways to choose b and c. We see that all
reducible polynomials can be written in the form a(x − b)(x − c). We have that there are (p − 1)

ways to choose a, and p2 − p(p−1)
2 ways to choose c and d. The reason for the inclusion of the

p(p−1)
2 term is to prevent the double counting when c and b are distinct but in different orders as

this multiplication is commutative. Now that we have found the number of reducible polynomials
we need only subtract that from the number of total polynomials to get the number of irreducible
polynomials.

(p− 1)p2 − (p− 1)

(
p2 − p(p− 1)

2

)
(p− 1)

(
p2 − p2 +

p(p− 1)

2

)
p(p− 1)2

2

is the number of irreducible polynomials in Zp[x].
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Problem 8

The ideals of Z12 are a subset of the additive subgroups of Z12, which we know to be ⟨0⟩, ⟨1⟩, ⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨6⟩.
Now, we show that for any factor k of n, kℓ will be a multiple of k mod n for any ℓ. Let
k,m, n, q, r ∈ Z

n = km

ℓk = nq + r

ℓk = kmq + r

ℓk − kmq + r

k(ℓ−mq) = r

so we see that is is a multiple of k mod n. Thus, for any of the subgroups we listed, they are
additive subgroups and also satisfy the multiplication requirement of the ideal and are all therefore
ideals. We then have that Z12/⟨1⟩ ∼= Z1, Z12/⟨2⟩ ∼= Z2, Z12/⟨3⟩ ∼= Z3, Z12/⟨4⟩ ∼= Z4, Z12/⟨6⟩ ∼=
Z6,Z12/⟨0⟩ ∼= Z12.

Problem 9

Every ring homomorphism has a kernel, and that kernel is an ideal. Since a field has only the
improper and trivial ideal, for a homomorphism ϕ : F → R, ker(ϕ) = F, ker(ϕ) = {0}. If
ker(ϕ) = F , then clearly ϕ maps everything to zero. Otherwise, let ker(ϕ) = {0}. We will show
that this implies that if ϕ(r) = ϕ(s), r = s and therefore ϕ is injective.

ϕ(r) = ϕ(s)

ϕ(r)− ϕ(s) = 0

ϕ(r − s) = 0

By the fact that ker(ϕ) = {0}, we have that r − s = 0 and therefore r = s, showing that ϕ is one
to one.

Problem 10

We have that

(x+ y)p =

p∑
i=0

(
p

i

)
xp−iyi

due to the commutativity of the ring. If we can show that p |
(
p
i

)
when i ̸= 0, p, then every term

other than xp and yp will become zero as in the statement we know that the ring has characteristic
p. We have that: (

p

i

)
=

p!

i!(p− i)!
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We observe that if i ̸= 0, p, then all the terms in the product in the denominator will be less than p.
Since

(
p
i

)
is an integer, and p has no divisors but itself, we see that that product must be dividing

other terms in the numerator and thus (
p

i

)
= p(k)

for some integer k We may then rewrite the sum as:

(x+ y)p = xp + pk1 ·
(
xp−1y

)
+ · · ·+ pkp−1 ·

(
xyp−1

)
+ yp

Then, by definiton of the characeristic of the ring this sum becomes:

xp + yp = (x+ y)p

Showing that (xy)p = xpyp is much simpler:

(xy)p =

ptimes︷ ︸︸ ︷
xy · · ·xy = xpyp

as this just follows from the commutativity of the ring.

Problem 11

a) Let r ∈ R, and let x be any element of R such that ϕ(x) ∈ I. Suppose that ϕ(rx) /∈ I, i.e rx /∈
ϕ−1(I). But ϕ(rx) = ϕ(r)ϕ(x), and since ϕ(x) ∈ I, ϕ(r)ϕ(x) = ϕ(rx) ∈ I. Contradiction. Also,
we have from Math 411 that subgroups correspond to subgroups under group homomorhpism
so ϕ−1(I) is an additive subgroup.

b) Let N be an ideal in R. Take arbitrary ϕ(a) ∈ ϕ(R), a ∈ R, and arbitrary ϕ(n), n ∈ N . Then
ϕ(a)ϕ(n) = ϕ(an). Since an ∈ N,ϕ(an) ∈ ϕ(N) and ϕ(N) is an ideal in ϕ(R). ϕ(N) is also
an additive subgroup as ring (group) homomorhpisms map subgroups to subgroups, and N is a
subgroup.

Problem 12

Let us take r ∈
√
I. We then have that ra ∈

√
I for all a ∈ R. We have k such that rk ∈ I. Then,

(ra)k = rkak(commutativity). Since rk is in I, rkak = (ra)k is also in I, and therefore ra ∈
√
I for

arbitrary a ∈ R. We also must show that
√
I is an additive subgroup. We have that 01 ∈ I, and

thus 0 ∈
√
I. Also, let r ∈

√
I. Then we have −r such that r+−r = 0. Take (−r)k. We know that

this is either −(rk) or rk. Clearly rk ∈ I. Also, since I is a subgroup, −(rk) also in I. Thus it is
closed under inverses. Lastly, we show closure. Suppose xk ∈ I and yk

′ ∈ I. Then x, y ∈
√
I. We

must show that (x+ y)n ∈ I for some n. Choose n = k + k′. Then

(x+ y)k+k′
= xkxk′

+ xkxk′−1y + · · ·+ xkyk
′
+ · · ·xyk−1yk

′
+ ykyk′

We can see that every term in this sum will contain either the factor xk or yk
′
. Thus all terms are

in I and therefore their sum is in I as it is a subgroup. Thus, x+ y ∈
√
I.
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Problem 13

We will show that for two ideals I and J in a ring R, I∩J is also an ideal. Take x ∈ I∩J . Then for
any a ∈ R, ax ∈ I and ax ∈ J and therefore ax ∈ I ∩J and thus we have satisfied this requirement.
Also, we must show that it is the additive subgroup. Since every ideal contains zero, and therefore
I and J both contain zero, then I ∩ J will contain zero. Also, take x ∈ I ∩ J . Then −x ∈ I and
−x ∈ J as I and J are addidive subgroups, and therefore −x ∈ I ∩ J . Furthermore, take x, y in
I ∩ J , and a ∈ R. We will show that I ∩ J is closed under addition, that is x+ y ∈ I ∩ J . a(x+ y)
is ax + ay by distributivity. ax ∈ I and ay ∈ I and therefore ax + ay ∈ I as it is a subgroup. By
the same argument, ax+ay ∈ J . Therefore, ax+ay ∈ I ∩J for arbitrary a and thus I ∩J is closed
and therefore a subgroup.

As a counterexample for union, take ⟨2⟩ ∪ ⟨3⟩. 2 ∈ ⟨2⟩, 3 ∈ ⟨3⟩. But 2 + 3 = 5 /∈ ⟨2⟩ ∪ ⟨3⟩ so it
is not closed under addition so not subgroup so not ideal.

Problem 14

We can show that this is an ideal as follows. For any f(x) ∈ R[x], and any g(x) = (x2+1)g′(x) ∈ I,
f(x)g(x) = (x2 + 1)f(x)g′(x) ∈ I. It is also an additive subgroup, as 0 = (x2 + 1) · 0, and if
f(x) = (x2 + 1)f ′(x) ∈ I, −f(x) = −(x2 + 1)f ′(x) ∈ I, and if f(x) = (x2 + 1)f ′(x), g(x) =
(x2 + 1)g′(x) ∈ I, (x2 + 1)f ′(x) + (x2 + 1)g′(x) = (x2 + 1)(f ′(x) + g′(x)) by distributivity.
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