411 Individual HW4

Jack Madden

October 2023

Problem 1

The idea here is that we first recognize that there is an isomorphism between \mathbb{Z}_4 and a subgroup of S_4 , which corresponds to the permutations which shift elements by the numbers in \mathbb{Z}_4 , and that there is an isomorphism between \mathbb{Z}_5^* and \mathbb{Z}_4 because \mathbb{Z}_5^* is cyclic and generated by 2. We then chain these two isomorphisms to generate an isomorphism between \mathbb{Z}_5 and a subgroup of S_4 .

Problem 2

a) Let's call the isomorphism $\phi : G \to H$. Choose arbitrary $a, b \in G$. Then these are mapped to $\phi(a), \phi(b) \in H$. Then:

$$
\phi(ab) = \phi(a) \cdot \phi(b)
$$

But then, since G is Abelian and thus $ab = ba$ and ϕ is a well defined function:

$$
\phi(ab) = \phi(ba) = \phi(a) \cdot \phi(b)
$$

$$
\phi(ab) = \phi(b) \cdot \phi(a) = \phi(a) \cdot \phi(b)
$$

So clearly for any $\phi(a) = y_1, \phi(b) = y_2 \in H$, $y_1y_2 = y_2y_1$ and H is Abelian.

b) Let's call the *n* elements of order d in G, $S = a_1, a_2, a_3, \cdots, a_n$. Then there is a set of elements $T = \phi(a_1), \phi(a_2), \phi(a_3), \cdots, \phi(a_n) \in$ *H*. Take an element $a_i \in S$. Then, since $a_i^d = a_i^{d-1} a_i$:

$$
\phi(a_i^{d-1}a_i) = \phi(a_i^{d-2}a_i) \cdot \phi(a_i)
$$

We can recursively apply this property and observe that:

$$
\phi(a_i^d) = \phi(a_i)^d
$$

But since $\phi(a_i^d) = \phi(e_G)$ and an isomorphism must map one identity to the other, we have $\phi(a_i)^d = e_H$. We can show that d is the order of $\phi(a_i)$ by contradiction. Assume there exists $0 < k < d$ such that $\phi(a_i)^k = e_H$. But then $\phi(a_i)^k = \phi(a_i^k)$, and since a_i^k cannot be e_G given the constraints on k, $\phi(a_i)^k$ cannot be e_H . Contradiction. So all elements a_i of order d in G have a corresponding element $\phi(a_i)$ of order d in H. So it's clear that H has at least n elements of order d. Assume then that there is an additional element $\phi(b) \in H$, $\text{ord}(b) \neq d$, $\text{ord}(\phi(b)) = d$. Let the order of b be $\ell \neq d$ So then:

$$
\phi(b)^d = \phi(b^d) = e_H
$$

We break this down into 3 cases.

Case 1: $\ell > d$: In this case, $b^d \neq e_G$ and thus $\phi(b)^d = \phi(b^d) \neq e_H$. Case 2: $\ell < d, \ell \nmid d$ In this case $d = \ell q + r, r, q \in \mathbb{Z}, 0 < r < \ell$. Then: α

$$
\phi(b)^d = \phi(b^d) = \phi(b^{\ell q + r}) = \phi(b^{\ell q})\phi(b^r) = \phi(e_G)\phi(b^r) = \phi(b^r)
$$

But based on the constraints placed on r, b^r cannot be e_G , so $\phi(b^r) \neq e_H$.

Case 3: $\ell < d, \ell | d$

Let $d = \ell q, q \in \mathbb{Z}^+$ Then:

$$
\phi(b)^d = \phi(b^d) = \phi(b^{\ell q}) = \phi((b^{\ell})^q) = \phi(b^{\ell})^q
$$

But then we observe that $\phi(b^{\ell}) = e_H$ and so order $\phi(b)$ is $\ell \neq d$.

Problem 3

- a) G has order 3! = 6. So if it were isomorphic to a subgroup of \mathbb{Z}_{60} , it would need to be isomorphic to $\langle 10 \rangle$ as $|\langle 10 \rangle|$ is 6. Suppose an isomorphism ϕ exists between S_3 and $\langle 10 \rangle$. We notice that S_3 has 3 elements of order 2, namely the transpositions $(12), (13), (23)$. However, only 1 element in $\langle 10 \rangle$ has order 2, 30. Based on the contrapositive of what was shown in Problem 2, this isomorphism cannot exist.
- b) Suppose an isomorphism ϕ exists between \mathbb{Z}_8 and S_7 . Take the element 1 in \mathbb{Z}_8 . We know that 1 has order 8 in \mathbb{Z}_8 and thus there must be a corresponding element of order 8 in S_7 . Let's look at the orders of elements in S_7 by decomposing the ways permutations can be written in disjoint cycles. ($abcdefg$): order 7, $(abcdef)$: order 6, $(abcdef)$: order 5, $(abcd)$: order 4, (abc) : order 3, (ab) : order 2, $(abc)(fg)$: order 10, $(abcd)(efg)$: order 12, $(abcd)(ef)$: order 4, $(abc)(def)$: order 3, $(abc)(de)$: order 6, $(abc)(de)(fg)$: order 6, $(ab)(cd)$, order 2, $(ab)(cd)(ef)$, order 2. Thus there is no corresponding element with order 8 and \mathbb{Z}_8 cannot be isomorphic to any subgroup of S_7 .
- c) Every element in \mathbb{Z}_8^* has order 2, however only one element in \mathbb{Z}_{24} has order 2, 12. Thus based on the contrapositive of what was shown in Problem 2 no isomorphism exists.

Problem 4

a) a

- b) We first observe that when x is a reflection, x^2 will simply be the identity, and when x is a rotation, if x_i is the i^{th} rotation (0-indexed) by 36 degrees, than x_i^2 is $x_{2i \mod 10}$. So the rotations which are square are those which can be written as $2i - 10q$, $q = 0, 1$. Factoring out 2 we find that $2(i - 5q)$ and conclude that only the even rotations in D_{10} are square.
- c) We contend that all elements are square. We represent the i^{th} even number as 2i, and the i^{th} odd number as $2i 1$. We notice that the result of $x + x$, $x \in \mathbb{Z}_{2021}$ mod 2021 is $(x + x) - 2021q$, where $q = 0, 1$. We observe that the i^{th} even number can simply be written as $i + i - 2021 \cdot 0$, and the ith odd number can be written as:

$$
(i + 1010) + (i + 1010) - 2021
$$

$$
2i + 2020 - 2021
$$

$$
2i - 1
$$

So all elements of \mathbb{Z}_{2021} are square.

Problem 6

a) We have the following types of cycles:

 $(a\;b\;c\;d\;e)$

 $\frac{5!}{5}$ = 24 such cycles exist, and these cycles have order 5.

 $(a \ b \ c \ d)$

 $\frac{5!}{4}$ = 30 such cycles exist, and these cycles have order 4.

 $(a\;b\;c)$

 $\frac{5.4.3}{3}$ = 20 such cycles exist, and they have order 3.

 $(a\;b\;c)(d\;e)$

 $\frac{5!}{3\cdot 2} = 20$ such cycles exist and these cycles have order $lcm(3, 2) = 6$.

 $(a\;b)(c\;d)$

 $\frac{5!}{2\cdot 2\cdot 2} = 15$ such cycles exist, and these cycles have order $lcm(2, 2) = 2$.

 $(a\;b)$

 $\frac{5.4}{2}$ = 10 such cycles exist, and they have order 2.

Then there is the identity permutation with order 1 and we have described all types of disjoint cycle decompositions.

b) b

c) For reflections, we see we have two types. The first type is those reflections which keep two points e, f . These reflections have the form $(a\ b)(c\ d)$. 3 such reflections exist and their order is 2. The second type is reflections which have 3 exchanges of pairs of points. These reflections have the form $(a\ b)(c\ d)(e\ f)$. The reflection of 4 turns also has this form as its decomposition is $(1\ 4)(2\ 5)(3\ 6)$ and so there are 4 elements that have this disjoint cycle decomposition. These permutations have order 2.

We now examine the rotations.

The rotation by 1 turn is $(1\ 2\ 3\ 4\ 5\ 6)$. The rotation by 5 turns is $(1\ 6\ 5\ 4\ 3\ 2)$.

Thus there are 2 such permutations of the form $(a\; b\; c\; d\; e\; f)$ and they have order 5.

The rotation by 2 turns is $(1\ 3\ 5)(2\ 4\ 6)$. The rotation by 4 turns is $(1\ 5\ 3)(2\ 6\ 4)$.

Thus there are 2 such permutations of the form $(a\; b\; c)(d\; e\; f)$ and they have order 3.

Problem 7

a) $\phi(x) = gx$ is only an isomorphism when $g = e$. When $g = e$, $\phi(x) = x$. Clearly this is a one to one function and we can see that it satisfies the property of isomorphism.

$$
\phi(x_1x_2) = \phi(x_1)\phi(x_2)
$$

$$
x_1x_2 = x_1x_2
$$

. However, let $q \neq e$. Let's check the property of isomorphism when $x_1, x_2 = e$.

$$
\phi(x_1x_2) = \phi(x_1)\phi(x_2)
$$

$$
\phi(ee) = \phi(e)\phi(e)
$$

$$
\phi(e) = \phi(e)\phi(e)
$$

$$
g = gg
$$

$$
g^{-1}g = g^{-1}gg
$$

$$
e = g
$$

And we have a contradiction.

b) $\phi(x) = gxg^{-1}$ is always an isomorphism. We check that ϕ is one to one. Let $\phi(x_1) = \phi(x_2)$

$$
\phi(x_1) = \phi(x_2)
$$

$$
gx_1g^{-1} = gx_2g^{-1}
$$

$$
g^{-1}gx_1g^{-1}g = g^{-1}gxg^{-1}g
$$

$$
ex_1e = ex_2e
$$

$$
x_1 = x_2
$$

We then verify that $\phi(x_1x_2) = \phi(x_1)\phi(x_2)$ for any $x_1, x_2 \in G$.

$$
\phi(x_1x_2) = \phi(x_1)\phi(x_2)
$$

\n
$$
gx_1x_2g^{-1} = gx_1g^{-1}gx_2g^{-1}
$$

\n
$$
gx_1x_2g^{-1} = gx_1x_2g^{-1}
$$

Problem 8

a) Without loss of generality assume $a < b$. We propose that (a b) can be written as the product of the adjacent transpositions:

$$
(a\ a+1)(a+1\ a+2)\cdots(b-2\ b-1)(b-1\ b)(b-1\ b-2)\cdots(a+2\ a+1)(a+1\ a)
$$

We observe that the product of the center 3 transpositions is $(b-2, b)$ giving us

 $(a\ a+1)\cdots(b-3\ b-2)(b-2\ b)(b-2\ b-3)\cdots(a+1\ a)$

Intuitively this process maps the elements $(a+1\,b-1)$ to themselves in reverse while incrementally moving a, b towards each other. We finally get

$$
(a\ a+1)(a+1\ b)(a+1\ a)
$$

which gives us our final transposition (a, b)

b) We have proved that any transposition in S_n can be written as a product of the adjacent transpositions in S_n , and we know that any permutation in S_n can be written as the product of transpositions. Thus transitively we can see that any $\sigma \in S_n$ can be written as the product of adjacent transpositions and thus the set $(1\ 2), (2\ 3)\cdots, (n-1\ n)$ is generating.

Problem 9

To prove this we'll break elements of S_n into two classes and evaluate $\sigma(i_1 i_2 \cdots i_k)\sigma^{-1}(t)$, $t \in S_n$.

Case 1, t such that $\sigma^{-1}(t) \notin \{i_1, i_2, \cdots, i_k\}$: In this case, $t \xrightarrow{\sigma^{-1}} \sigma^{-1}(t) \xrightarrow{(i_1,i_2,\dots,i_k)} \sigma^{-1}(t) \xrightarrow{\sigma} t$. Case 2 t such that $\sigma^{-1}(t) \in \{i_1, i_2, \dots, i_k\}$:

In this case it is more complicated to evaluate. Let $\sigma^{-1}(t) = i_m \in \{i_1, i_2, \dots, i_k\}$. First t is moved to $\sigma^{-1}(t) = i_m$. i_m is then moved to i_{m+1} which is moved to $\sigma(i_{m+1})$. But since $\sigma^{-1}(t) = i_m$, $t = \sigma(i_m)$ and thus $\sigma(i_m)$ is moved to $\sigma(i_{m+1}$ yielding the cycle $(\sigma(i_1) \sigma(i_2) \cdots \sigma(i_k))$. Since the elements in case 1 are simply moved to themselves, we have $\sigma(i_1 i_2 \cdots i_k)\sigma^{-1} = (\sigma(i_1) \sigma(i_2) \cdots \sigma(i_k)).$