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Problem 1

a)

D3 S3

Id Id
Rot 120 (123)
Rot 240 (132)
Refl 1 (23)
Refl 2 (13)
Refl 3 (12)

b)

Z5
∗ S4

1 Id
2 (1234)
3 (1432)
4 (13)(24)

The idea here is that we first recognize that there is an isomorphism between Z4 and a subgroup of S4, which corresponds
to the permutations which shift elements by the numbers in Z4, and that there is an isomorphism between Z5

∗ and Z4

because Z5
∗ is cyclic and generated by 2. We then chain these two isomorphisms to generate an isomorphism between Z5

and a subgroup of S4.

Problem 2

a) Let’s call the isomorphism ϕ : G → H. Choose arbitrary a, b ∈ G. Then these are mapped to ϕ(a), ϕ(b) ∈ H. Then:

ϕ(ab) = ϕ(a) · ϕ(b)

But then, since G is Abelian and thus ab = ba and ϕ is a well defined function:

ϕ(ab) = ϕ(ba) = ϕ(a) · ϕ(b)

ϕ(ab) = ϕ(b) · ϕ(a) = ϕ(a) · ϕ(b)

So clearly for any ϕ(a) = y1, ϕ(b) = y2 ∈ H, y1y2 = y2y1 and H is Abelian.

b) Let’s call the n elements of order d in G, S = a1, a2, a3, · · · , an. Then there is a set of elements T = ϕ(a1), ϕ(a2), ϕ(a3), · · · , ϕ(an) ∈
H. Take an element ai ∈ S. Then, since adi = ad−1

i ai:

ϕ(ad−1
i ai) = ϕ(ad−2

i ai) · ϕ(ai)

We can recursively apply this property and observe that:

ϕ(adi ) = ϕ(ai)
d

But since ϕ(adi ) = ϕ(eG) and an isomorphism must map one identity to the other, we have ϕ(ai)
d = eH . We can show that

d is the order of ϕ(ai) by contradiction. Assume there exists 0 < k < d such that ϕ(ai)
k = eH . But then ϕ(ai)

k = ϕ(aki ),
and since aki cannot be eG given the constraints on k, ϕ(ai)

k cannot be eH . Contradiction. So all elements ai of order d
in G have a corresponding element ϕ(ai) of order d in H. So it’s clear that H has at least n elements of order d. Assume
then that there is an additional element ϕ(b) ∈ H, ord(b) ̸= d, ord(ϕ(b)) = d. Let the order of b be ℓ ̸= d So then:

ϕ(b)d = ϕ(bd) = eH
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We break this down into 3 cases.

Case 1: ℓ > d:

In this case, bd ̸= eG and thus ϕ(b)d = ϕ(bd) ̸= eH .

Case 2: ℓ < d, ℓ ∤ d In this case d = ℓq + r, r, q ∈ Z, 0 < r < ℓ.

Then:
ϕ(b)d = ϕ(bd) = ϕ(bℓq+r) = ϕ(blq)ϕ(br) = ϕ(eG)ϕ(b

r) = ϕ(br)

But based on the constraints placed on r, br cannot be eG, so ϕ(br) ̸= eH .

Case 3: ℓ < d, ℓ|d
Let d = ℓq, q ∈ Z+ Then:

ϕ(b)d = ϕ(bd) = ϕ(bℓq) = ϕ((bℓ)q) = ϕ(bℓ)q

But then we observe that ϕ(bℓ) = eH and so order ϕ(b) is ℓ ̸= d.

Problem 3

a) G has order 3! = 6. So if it were isomorphic to a subgroup of Z60, it would need to be isomorphic to ⟨10⟩ as |⟨10⟩| is
6. Suppose an isomorphism ϕ exists between S3 and ⟨10⟩. We notice that S3 has 3 elements of order 2, namely the
transpositions (12), (13), (23). However, only 1 element in ⟨10⟩ has order 2, 30. Based on the contrapositive of what was
shown in Problem 2, this isomorphism cannot exist.

b) Suppose an isomorphism ϕ exists between Z8 and S7. Take the element 1 in Z8. We know that 1 has order 8 in Z8 and
thus there must be a corresponding element of order 8 in S7. Let’s look at the orders of elements in S7 by decomposing
the ways permutations can be written in disjoint cycles. (abcdefg): order 7, (abcdef) : order 6, (abcde): order 5, (abcd):
order 4, (abc): order 3, (ab): order 2, (abcde)(fg): order 10, (abcd)(efg): order 12, (abcd)(ef): order 4, (abc)(def): order
3, (abc)(de): order 6, (abc)(de)(fg): order 6, (ab)(cd), order 2, (ab)(cd)(ef), order 2. Thus there is no corresponding
element with order 8 and Z8 cannot be isomorphic to any subgroup of S7.

c) Every element in Z∗
8 has order 2, however only one element in Z24 has order 2, 12. Thus based on the contrapositive of

what was shown in Problem 2 no isomorphism exists.

Problem 4

a) a

b) We first observe that when x is a reflection, x2 will simply be the identity, and when x is a rotation, if xi is the ith

rotation (0-indexed) by 36 degrees, than x2
i is x2i mod 10. So the rotations which are square are those which can be

written as 2i− 10q, q = 0, 1. Factoring out 2 we find that 2(i− 5q) and conclude that only the even rotations in D10

are square.

c) We contend that all elements are square. We represent the ith even number as 2i, and the ith odd number as 2i − 1.
We notice that the result of x + x, x ∈ Z2021 mod 2021 is (x + x) − 2021q, where q = 0, 1. We observe that the ith

even number can simply be written as i+ i− 2021 · 0, and the ith odd number can be written as:

(i+ 1010) + (i+ 1010)− 2021

2i+ 2020− 2021

2i− 1

So all elements of Z2021 are square.

Problem 6

a) We have the following types of cycles:
(a b c d e)

5!
5 = 24 such cycles exist, and these cycles have order 5.

(a b c d)
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5!
4 = 30 such cycles exist, and these cycles have order 4.

(a b c)

5·4·3
3 = 20 such cycles exist, and they have order 3.

(a b c)(d e)

5!
3·2 = 20 such cycles exist and these cycles have order lcm(3, 2) = 6.

(a b)(c d)

5!
2·2·2 = 15 such cycles exist, and these cycles have order lcm(2, 2) = 2.

(a b)

5·4
2 = 10 such cycles exist, and they have order 2.

Then there is the identity permutation with order 1 and we have described all types of disjoint cycle decompositions.

b) b

c) For reflections, we see we have two types. The first type is those reflections which keep two points e, f . These reflections
have the form (a b)(c d). 3 such reflections exist and their order is 2. The second type is reflections which have 3
exchanges of pairs of points. These reflections have the form (a b)(c d)(e f). The reflection of 4 turns also has this
form as its decomposition is (1 4)(2 5)(3 6) and so there are 4 elements that have this disjoint cycle decomposition.
These permutations have order 2.

We now examine the rotations.

The rotation by 1 turn is (1 2 3 4 5 6). The rotation by 5 turns is (1 6 5 4 3 2).

Thus there are 2 such permutations of the form (a b c d e f) and they have order 5.

The rotation by 2 turns is (1 3 5)(2 4 6). The rotation by 4 turns is (1 5 3)(2 6 4).

Thus there are 2 such permutations of the form (a b c)(d e f) and they have order 3.

Problem 7

a) ϕ(x) = gx is only an isomorphism when g = e. When g = e, ϕ(x) = x. Clearly this is a one to one function and we
can see that it satisfies the property of isomorphism.

ϕ(x1x2) = ϕ(x1)ϕ(x2)

x1x2 = x1x2

. However, let g ̸= e. Let’s check the property of isomorphism when x1, x2 = e.

ϕ(x1x2) = ϕ(x1)ϕ(x2)

ϕ(ee) = ϕ(e)ϕ(e)

ϕ(e) = ϕ(e)ϕ(e)

g = gg

g−1g = g−1gg

e = g

And we have a contradiction.

b) ϕ(x) = gxg−1 is always an isomorphism. We check that ϕ is one to one. Let ϕ(x1) = ϕ(x2)

ϕ(x1) = ϕ(x2)

gx1g
−1 = gx2g

−1

g−1gx1g
−1g = g−1gxg−1g

ex1e = ex2e

x1 = x2

We then verify that ϕ(x1x2) = ϕ(x1)ϕ(x2) for any x1, x2 ∈ G.

ϕ(x1x2) = ϕ(x1)ϕ(x2)

gx1x2g
−1 = gx1g

−1gx2g
−1

gx1x2g
−1 = gx1x2g

−1
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Problem 8

a) Without loss of generality assume a < b. We propose that (a b) can be written as the product of the adjacent
transpositions:

(a a+ 1)(a+ 1 a+ 2) · · · (b− 2 b− 1)(b− 1 b)(b− 1 b− 2) · · · (a+ 2 a+ 1)(a+ 1 a)

We observe that the product of the center 3 transpositions is (b− 2 b) giving us

(a a+ 1) · · · (b− 3 b− 2)(b− 2 b)(b− 2 b− 3) · · · (a+ 1 a)

Intuitively this process maps the elements (a+1 b−1) to themselves in reverse while incrementally moving a, b towards
each other. We finally get

(a a+ 1)(a+ 1 b)(a+ 1 a)

which gives us our final transposition (a b)

b) We have proved that any transposition in Sn can be written as a product of the adjacent transpositions in Sn, and
we know that any permutation in Sn can be written as the product of transpositions. Thus transitively we can see
that any σ ∈ Sn can be written as the product of adjacent transpositions and thus the set (1 2), (2 3) · · · , (n− 1 n) is
generating.

Problem 9

To prove this we’ll break elements of Sn into two classes and evaluate σ(i1 i2 · · · ik)σ
−1(t), t ∈ Sn.

Case 1, t such that σ−1(t) /∈ {i1, i2, · · · , ik}:

In this case, t
σ−1

−−→ σ−1(t)
(i1,i2,··· ,ik)−−−−−−−−→ σ−1(t)

σ−→ t.

Case 2 t such that σ−1(t) ∈ {i1, i2, · · · , ik}:
In this case it is more complicated to evaluate. Let σ−1(t) = im ∈ {i1, i2, · · · , ik}. First t is moved to σ−1(t) = im.
im is then moved to im+1 which is moved to σ(im+1). But since σ−1(t) = im, t = σ(im) and thus σ(im) is moved to
σ(im+1 yielding the cycle (σ(i1) σ(i2) · · · σ(ik)). Since the elements in case 1 are simply moved to themselves, we have
σ(i1 i2 · · · ik)σ

−1 = (σ(i1) σ(i2) · · · σ(ik)).
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