411 Individual HW4

Jack Madden

October 2023

Problem 1

	D_3		S_3
	Id	Id	
	Rot 120		(123)
a) _	Rot 240		(132)
	Refl 1		(23)
	Refl 2		(13)
	Refl	3	(12)
		ı	~
	\mathbb{Z}_5^*	S_4	
	1	Id	
b)	2	(1234)	
	3	$(14\overline{32})$	
	4	(13)(24)	

The idea here is that we first recognize that there is an isomorphism between \mathbb{Z}_4 and a subgroup of S_4 , which corresponds to the permutations which shift elements by the numbers in \mathbb{Z}_4 , and that there is an isomorphism between \mathbb{Z}_5^* and \mathbb{Z}_4 because \mathbb{Z}_5^* is cyclic and generated by 2. We then chain these two isomorphisms to generate an isomorphism between \mathbb{Z}_5 and a subgroup of S_4 .

Problem 2

a) Let's call the isomorphism $\phi: G \to H$. Choose arbitrary $a, b \in G$. Then these are mapped to $\phi(a), \phi(b) \in H$. Then:

$$\phi(ab) = \phi(a) \cdot \phi(b)$$

But then, since G is Abelian and thus ab = ba and ϕ is a well defined function:

$$\phi(ab) = \phi(ba) = \phi(a) \cdot \phi(b)$$

$$\phi(ab) = \phi(b) \cdot \phi(a) = \phi(a) \cdot \phi(b)$$

So clearly for any $\phi(a) = y_1, \phi(b) = y_2 \in H, y_1y_2 = y_2y_1$ and H is Abelian.

b) Let's call the *n* elements of order *d* in G, $S = a_1, a_2, a_3, \cdots, a_n$. Then there is a set of elements $T = \phi(a_1), \phi(a_2), \phi(a_3), \cdots, \phi(a_n) \in H$. Take an element $a_i \in S$. Then, since $a_i^d = a_i^{d-1}a_i$:

$$\phi(a_i^{d-1}a_i) = \phi(a_i^{d-2}a_i) \cdot \phi(a_i)$$

We can recursively apply this property and observe that:

$$\phi(a_i^d) = \phi(a_i)^d$$

But since $\phi(a_i^d) = \phi(e_G)$ and an isomorphism must map one identity to the other, we have $\phi(a_i)^d = e_H$. We can show that d is the order of $\phi(a_i)$ by contradiction. Assume there exists 0 < k < d such that $\phi(a_i)^k = e_H$. But then $\phi(a_i)^k = \phi(a_i^k)$, and since a_i^k cannot be e_G given the constraints on k, $\phi(a_i)^k$ cannot be e_H . Contradiction. So all elements a_i of order d in G have a corresponding element $\phi(a_i) \in H$, $ord(b) \neq d$, $ord(\phi(b)) = d$. Let the order of b be $\ell \neq d$ So then:

$$\phi(b)^d = \phi(b^d) = e_H$$

We break this down into 3 cases.

Case 1: $\ell > d$:

In this case, $b^d \neq e_G$ and thus $\phi(b)^d = \phi(b^d) \neq e_H$.

Case 2: $\ell < d, \ell \nmid d$ In this case $d = \ell q + r, r, q \in \mathbb{Z}, 0 < r < \ell$.

Then:

$$\phi(b)^{d} = \phi(b^{d}) = \phi(b^{\ell q + r}) = \phi(b^{lq})\phi(b^{r}) = \phi(e_{G})\phi(b^{r}) = \phi(b^{r})$$

But based on the constraints placed on r, b^r cannot be e_G , so $\phi(b^r) \neq e_H$.

Case 3: $\ell < d, \ell | d$ Let $d = \ell q, q \in \mathbb{Z}^+$ Then:

$$\phi(b)^d = \phi(b^d) = \phi(b^{\ell q}) = \phi((b^{\ell})^q) = \phi(b^{\ell})^q$$

But then we observe that $\phi(b^{\ell}) = e_H$ and so order $\phi(b)$ is $\ell \neq d$.

Problem 3

- a) G has order 3! = 6. So if it were isomorphic to a subgroup of \mathbb{Z}_{60} , it would need to be isomorphic to $\langle 10 \rangle$ as $|\langle 10 \rangle|$ is 6. Suppose an isomorphism ϕ exists between S_3 and $\langle 10 \rangle$. We notice that S_3 has 3 elements of order 2, namely the transpositions (12), (13), (23). However, only 1 element in $\langle 10 \rangle$ has order 2, 30. Based on the contrapositive of what was shown in Problem 2, this isomorphism cannot exist.
- b) Suppose an isomorphism ϕ exists between \mathbb{Z}_8 and S_7 . Take the element 1 in \mathbb{Z}_8 . We know that 1 has order 8 in \mathbb{Z}_8 and thus there must be a corresponding element of order 8 in S_7 . Let's look at the orders of elements in S_7 by decomposing the ways permutations can be written in disjoint cycles. (*abcdefg*): order 7, (*abcdef*) : order 6, (*abcde*): order 5, (*abcd*): order 4, (*abc*): order 3, (*ab*): order 2, (*abcde*)(*fg*): order 10, (*abcd*)(*efg*): order 12, (*abcd*)(*ef*): order 4, (*abc*)(*def*): order 3, (*abc*)(*de*): order 6, (*abc*)(*de*)(*fg*): order 6, (*ab*)(*cd*), order 2, (*ab*)(*cd*)(*ef*), order 2. Thus there is no corresponding element with order 8 and \mathbb{Z}_8 cannot be isomorphic to any subgroup of S_7 .
- c) Every element in \mathbb{Z}_8^* has order 2, however only one element in \mathbb{Z}_{24} has order 2, 12. Thus based on the contrapositive of what was shown in Problem 2 no isomorphism exists.

Problem 4

a) a

- b) We first observe that when x is a reflection, x^2 will simply be the identity, and when x is a rotation, if x_i is the i^{th} rotation (0-indexed) by 36 degrees, than x_i^2 is $x_{2i \mod 10}$. So the rotations which are square are those which can be written as 2i 10q, q = 0, 1. Factoring out 2 we find that 2(i 5q) and conclude that only the even rotations in D_{10} are square.
- c) We contend that all elements are square. We represent the i^{th} even number as 2i, and the i^{th} odd number as 2i 1. We notice that the result of x + x, $x \in \mathbb{Z}_{2021} \mod 2021$ is (x + x) - 2021q, where q = 0, 1. We observe that the i^{th} even number can simply be written as $i + i - 2021 \cdot 0$, and the i^{th} odd number can be written as:

$$(i + 1010) + (i + 1010) - 2021$$

 $2i + 2020 - 2021$
 $2i - 1$

So all elements of \mathbb{Z}_{2021} are square.

Problem 6

a) We have the following types of cycles:

 $(a \ b \ c \ d \ e)$

 $\frac{5!}{5} = 24$ such cycles exist, and these cycles have order 5.

 $(a \ b \ c \ d)$

 $\frac{5!}{4} = 30$ such cycles exist, and these cycles have order 4.

 $(a \ b \ c)$

 $\frac{5\cdot 4\cdot 3}{3} = 20$ such cycles exist, and they have order 3.

 $(a \ b \ c)(d \ e)$

 $\frac{5!}{3\cdot 2} = 20$ such cycles exist and these cycles have order lcm(3,2) = 6.

 $(a \ b)(c \ d)$

 $\frac{5!}{2\cdot 2\cdot 2} = 15$ such cycles exist, and these cycles have order lcm(2,2) = 2.

 $(a \ b)$

 $\frac{5\cdot 4}{2} = 10$ such cycles exist, and they have order 2.

Then there is the identity permutation with order 1 and we have described all types of disjoint cycle decompositions.

b) b

c) For reflections, we see we have two types. The first type is those reflections which keep two points e, f. These reflections have the form $(a \ b)(c \ d)$. 3 such reflections exist and their order is 2. The second type is reflections which have 3 exchanges of pairs of points. These reflections have the form $(a \ b)(c \ d)(e \ f)$. The reflection of 4 turns also has this form as its decomposition is $(1 \ 4)(2 \ 5)(3 \ 6)$ and so there are 4 elements that have this disjoint cycle decomposition. These permutations have order 2.

We now examine the rotations.

The rotation by 1 turn is $(1\ 2\ 3\ 4\ 5\ 6)$. The rotation by 5 turns is $(1\ 6\ 5\ 4\ 3\ 2)$.

Thus there are 2 such permutations of the form $(a \ b \ c \ d \ e \ f)$ and they have order 5.

The rotation by 2 turns is $(1\ 3\ 5)(2\ 4\ 6)$. The rotation by 4 turns is $(1\ 5\ 3)(2\ 6\ 4)$.

Thus there are 2 such permutations of the form $(a \ b \ c)(d \ e \ f)$ and they have order 3.

Problem 7

a) $\phi(x) = gx$ is only an isomorphism when g = e. When g = e, $\phi(x) = x$. Clearly this is a one to one function and we can see that it satisfies the property of isomorphism.

$$\phi(x_1x_2) = \phi(x_1)\phi(x_2)$$

$$x_1 x_2 = x_1 x_2$$

. However, let $g \neq e$. Let's check the property of isomorphism when $x_1, x_2 = e$.

$$\phi(x_1 x_2) = \phi(x_1)\phi(x_2)$$

$$\phi(ee) = \phi(e)\phi(e)$$

$$\phi(e) = \phi(e)\phi(e)$$

$$g = gg$$

$$g^{-1}g = g^{-1}gg$$

$$e = g$$

And we have a contradiction.

b) $\phi(x) = gxg^{-1}$ is always an isomorphism. We check that ϕ is one to one. Let $\phi(x_1) = \phi(x_2)$

$$\phi(x_1) = \phi(x_2)$$

$$gx_1g^{-1} = gx_2g^{-1}$$

$$g^{-1}gx_1g^{-1}g = g^{-1}gxg^{-1}g$$

$$ex_1e = ex_2e$$

$$x_1 = x_2$$

We then verify that $\phi(x_1x_2) = \phi(x_1)\phi(x_2)$ for any $x_1, x_2 \in G$.

$$\phi(x_1 x_2) = \phi(x_1)\phi(x_2)$$
$$gx_1 x_2 g^{-1} = gx_1 g^{-1} gx_2 g^{-1}$$
$$gx_1 x_2 g^{-1} = gx_1 x_2 g^{-1}$$

Problem 8

a) Without loss of generality assume a < b. We propose that (a b) can be written as the product of the adjacent transpositions:

$$(a a + 1)(a + 1 a + 2) \cdots (b - 2 b - 1)(b - 1 b)(b - 1 b - 2) \cdots (a + 2 a + 1)(a + 1 a)$$

We observe that the product of the center 3 transpositions is (b-2 b) giving us

 $(a \ a+1)\cdots(b-3 \ b-2)(b-2 \ b)(b-2 \ b-3)\cdots(a+1 \ a)$

Intuitively this process maps the elements (a+1 b-1) to themselves in reverse while incrementally moving a, b towards each other. We finally get

$$(a \ a+1)(a+1 \ b)(a+1 \ a)$$

which gives us our final transposition $(a \ b)$

b) We have proved that any transposition in S_n can be written as a product of the adjacent transpositions in S_n , and we know that any permutation in S_n can be written as the product of transpositions. Thus transitively we can see that any $\sigma \in S_n$ can be written as the product of adjacent transpositions and thus the set $(1 \ 2), (2 \ 3) \cdots, (n - 1 \ n)$ is generating.

Problem 9

To prove this we'll break elements of S_n into two classes and evaluate $\sigma(i_1 \ i_2 \ \cdots \ i_k)\sigma^{-1}(t), t \in S_n$.

Case 1, t such that $\sigma^{-1}(t) \notin \{i_1, i_2, \cdots, i_k\}$: In this case, $t \xrightarrow{\sigma^{-1}} \sigma^{-1}(t) \xrightarrow{(i_1, i_2, \cdots, i_k)} \sigma^{-1}(t) \xrightarrow{\sigma} t$. Case 2 t such that $\sigma^{-1}(t) \in \{i_1, i_2, \cdots, i_k\}$:

In this case it is more complicated to evaluate. Let $\sigma^{-1}(t) = i_m \in \{i_1, i_2, \cdots, i_k\}$. First t is moved to $\sigma^{-1}(t) = i_m$. i_m is then moved to i_{m+1} which is moved to $\sigma(i_{m+1})$. But since $\sigma^{-1}(t) = i_m$, $t = \sigma(i_m)$ and thus $\sigma(i_m)$ is moved to $\sigma(i_{m+1}$ yielding the cycle $(\sigma(i_1) \sigma(i_2) \cdots \sigma(i_k))$. Since the elements in case 1 are simply moved to themselves, we have $\sigma(i_1 i_2 \cdots i_k)\sigma^{-1} = (\sigma(i_1) \sigma(i_2) \cdots \sigma(i_k))$.