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Problem 1

a) If K is an ideal in R/I, then K must contain I as K is an additive subgroup of R/I and 0 + I = I is
the additive identity. Thus, I ∈ π−1(K). We then show that π−1(K) is an ideal in R. We have that
π−1(K) is an additive subgroup in R as subgroups correspond to subgroups under homomorphism and
K is an additive subgroup as that is a condition of being an ideal. Then, suppose r ∈ R, k ∈ π−1(K).
Then π(rk) = π(r)π(k). Since π(k) ∈ K, π(r)π(k) = π(rk) ∈ K and therefore rπ−1(K) ⊆ π−1(K) for
any r ∈ R and thus π−1(K) is an ideal.

b) We must show that π(J) is an ideal in R/I. π(J) is an additive subgroup of R/I. Thus it is sufficient
to show that for any r ∈ R, π(r)π(J) is in π(J). π(r)π(J) = π(rJ). Since rJ is a subset of J , its image
under π will be a subset of J . Thus, any ideal J containing I can be written as π−1(K) for K = π(J).

c) We have that this map is injective, take K,L ideals in R/I, as if π−1(K) = π−1(L), π(π−1(K)) =
π(π−1(L)) → K = L. We have the surjectivity of this map from part (b).

Problem 2

Clearly, ∼ is reflexive, as a = 1 · a and 1 is a unit. Also, if a = ub, then b = u−1a, and we know u−1 exists
as u is a unit, and thus ∼ is symmetric. Also, suppose a = ub, b = u′c. Then a = uu′c, and uu′ is a unit
having inverse u′−1u−1. Thus ∼ is transitive and therefore an equivalence relation.

Problem 3

This bijection is to send any principal ideal (n) to the equivalence class with representative n. We first
show that this map is injective. Suppose n ∼ m. Then (n) = rn ∀r ∈ R, and (m) = rm ∀r ∈ R. But we
have m = un for some unit u in R. So (m) = r(un). Let us show that these sets are equal. Clearly for
any ru(n) ∈ (m), ru = r′ ∈ R and r′n ∈ (n), so (m) ⊆ (n). Also, take any rn ∈ (n). Let r′ = ru−1,
then r′(un) = rn ∈ (m). So (n) ⊆ (m) and therefore (m) = (n). Thus m ∼ n → (m) = (n). Map is also
clearly surjective as if we take some representative of an equivalence class n, it is an element in R and thus
inherently generates some principal ideal.

Problem 4

Suppose that f can be written as g(x)h(x) for deg(g) = m, deg(h) = n < deg(f),m ≤ n. Let g(x) =
amxm + · · ·+ a0, h(x) = bnx

n + · · ·+ b0, f(x) = cm+nx
m+n + · · ·+ c0. We have that the constant coefficient

in f(x) is a0b0. We know that p may only be in the factorization of either a0 or b0. Choose p | a0. By strong
induction, we will show that p | ai∀i ≤ m. Suppose p | aj ,∀j ≤ i− 1. Then,

ci = aib0 + ai−1b1 + · · ·+ a0bi
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By our inductive hypothesis we have that:

ci = aib0 + pr

for some r ∈ R Also, since i ≤ m < m+ 1 ≤ m+ n, p | ci: Therefore, for some r′ ∈ R,

aib0 = p(r − r′)

Since p ∤ b0, p | ai Therefore, we can conclude that p | am and therefore p | ambn. However, we also have
p ∤ ambn. This implies that ambn admits two non-associative factorizations which cannot be true in a UFD.
Therefore, contradiction.

Problem 5

We can think of this polynomial as being in the ring of polynomials with coefficients in C[y]. Since C is
a field, and therefore a UFD, C[y] is a UFD, and then (C[y])[x] is a UFD by the same logic. Thus we
can apply the more general criterion proved in Problem 4. We have coefficients a7 = 1, a0 = (y2 − 1).
y2 − 1 = (y + 1)(y − 1), so (y + 1) | (y2 − 1) but (y + 1)2 ∤ (y2 − 1) and (y + 1) ∤ 1 = a7. (y + 1) is clearly
irreducible as it is linear. Thus, this polynomial is irreducible.

Problem 6

We show that this is an ideal. First we show that it is an additive subgroup. We have that 0 = 0r1 + 0r2 +
· · ·+0rs ∈ (r1, . . . , rs). Also, suppose c = a1r1 + a2r2 + · · ·+ asrs ∈ (r1, . . . , rs). Also, d = −a1r1 +−a2r2 +
· · ·+−asrs ∈ (r1, . . . , rs). c+ d = r1(a1 − a1) + · · ·+ rs(as − as) = r10+ · · ·+ rs0 = 0 by distributivity thus
d = −c ∈ (r1, . . . , rs) and therefore (r1, . . . , rs) contains inverses. Also, suppose a = a1r1 + a2r2 + · · ·+ asrs,
b = b1r1 + b2r2 + · · · + bsrs. By distributivity, a + b = (a1 + b1)r1 + · · · + (as + bs)rs ∈ (r1, . . . , rs).
Thus, (r1, . . . , rs) is an additive subgroup. Also, let r ∈ R. Then for any a1r1 + · · · + asrs ∈ (r1, . . . , rs),
r(a1r1 + · · ·+ asrs) = (ra1)r1 + · · ·+ (ras)rs ∈ (r1, . . . , rs). Thus it is an ideal.

Problem 7

Suppose that I(f) ̸= R. In this case, I(f) must be contained in some maximal ideal M ̸= R. Consider then
the ring of polynomials R/M [x]. We know that since R/M is a field, R/M [x] must be at least an integral
domain. We also have that g(x) and h(x) cannot be zero in this integral domain for the following reason.
Let g(x) = amxm+ · · ·+a0, h(x) = bnx

n+ · · ·+ b0, f(x) = cm+nx
m+n+ · · ·+ c0. If g(x), h(x) are zero in this

domain, then all of their coefficients are in I(f). If this is the case, then for g(x) (and therefore also h(x),

g(x) = (an+mrn+m + · · ·+ a0r0)x
m + · · ·+ (an+msn+m + · · ·+ a0s0)

where ri, si ∈ R. Linear combinations of these coefficients are then:

tm(an+mrn+m + · · ·+ a0r0) + · · ·+ t0(an+msn+m + · · ·+ a0s0)

which by distributivity is:

(an+mtmrn+m + · · ·+ a0tmr0) + · · ·+ (an+mt0sn+m + · · ·+ a0t0s0)

an+m(tmrn+m + · · ·+ t0sn+m) + · · ·+ a0(tmr0 + · · · t0s0)

which then implies that I(g) ⊆ I(f) ̸= R which cannot be the case. So we have that f(x), g(x) ̸= 0 ∈ R/M [x],
but f(x)g(x) = 0 ∈ R/M [x], as all the coefficients of f(x)g(x) are clearly linear combinations of coefficients
of f(x)g(x). This is a contradiction as R/M [x] is an integral domain.
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Problem 8

a) We have that (x+ 1)2 + (x+ 1) + 1 = (x2 + 1 + x+ 1 + 1) = x2 + x+ 1 which is in 0 + (x2 + x+ 1) in
the quotient ring. Also, x2 + x+ 1 is in 0 + (x2 + x+ 1) in the quotient ring. So α = (x+ 1) + I, x+ I.

b) We have that x2 +x+1 has roots at α. Since it is a quadratic, these roots are its factors. Choose α = x.
Then x2 + x+ 1 = (x+ α)(x+ (α+ 1).

Problem 9

We have that this polynomial is irreducible as it has no roots and is cubic, f(0) = 1, f(1) = α, f(α) =
α+ 1, f(α+ 1) = α.

Problem 10

a) Since x2 − α is a quadratic, it is sufficient to show that if there exists an α such that x2 − α has no
roots, x2 − α is irreducible. The roots of x2 − α must satisfy the equation x2 = α. We know that the set
x2|x ∈ Zp can have size at most p− 1, as both 12 = 1 and (p− 1)2 = 1. Thus, there exists some α such
that there is no x such that x2 = α and thus there exists some α such that x2 − α is irreducible.

b) Since x2−α is irreducible, and therefore the ideal generated by it is maximal, the quotient ring Zp/(x
2−α)

is a field. It has p2 elements as its elements are the remainders of polynomial division by x2 − α which
are nx+m, where n ∈ [0, p− 1](p choices),m ∈ [0, p− 1](p choices).

Problem 11

a) Let us show that this is a subring of K[x]. We have that it is an additive subgroup by the fact that the
zero polynomial has a1 = 0, also, if we have a0 + a2x

2 + a3x
3 + · · · + anx

n ∈ R, then −a0 + −a2x
2 +

−a3x
3 + · · · − anx

n ∈ R. Also, by distributivity,

(a0+a2x
2+ · · ·+anx

n+b0+b2x
2+ · · · bmxm) = (a0+b0)+(a2+b2)x

2+ · · ·+(am+bm)xm+ · · · anxn ∈ R

. Also, since the coefficient of the linear term of the multiplication of two polynomials is equal to
a1b0 + b1a0, and a1, b1 = 0, the linear term of the multiplication of two polynomials in R will also be in
R. So it is is a subring.

b) As a counterexample, if we choose K = C, we see that the polynomial x4 − 2 ∈ R ⊂ C[x] has the two
factorizations in R, (x2 −

√
2)(x2 +

√
2), (x2 +

√
2i)2.
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