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Problem 1

a) If K is an ideal in R/I, then K must contain I as K is an additive subgroup of R/I and 0+ I = I is
the additive identity. Thus, I € 7~}(K). We then show that 7—!(K) is an ideal in R. We have that
7~ 1(K) is an additive subgroup in R as subgroups correspond to subgroups under homomorphism and
K is an additive subgroup as that is a condition of being an ideal. Then, suppose r € R, k € 7~ !(K).
Then w(rk) = n(r)m(k). Since 7(k) € K, 7(r)n(k) = n(rk) € K and therefore rn~'(K) C 7= 1(K) for
any r € R and thus 7—!(K) is an ideal.

b) We must show that w(J) is an ideal in R/I. w(J) is an additive subgroup of R/I. Thus it is sufficient
to show that for any r € R, w(r)n(J) is in w(J). w(r)w(J) = w(rJ). Since rJ is a subset of J, its image
under 7 will be a subset of J. Thus, any ideal J containing I can be written as 7= 1(K) for K = n(J).

c) We have that this map is injective, take K, L ideals in R/I, as if 77 Y(K) = n~ (L), n(r~1(K)) =
m(m~ (L)) — K = L. We have the surjectivity of this map from part (b).

Problem 2

1 1

Clearly, ~ is reflexive, as a = 1-a and 1 is a unit. Also, if a = ub, then b = v~ "a, and we know u~" exists
as u is a unit, and thus ~ is symmetric. Also, suppose a = ub, b = u/c. Then a = uu'c, and wu’ is a unit
having inverse v/~ tu~'. Thus ~ is transitive and therefore an equivalence relation.

Problem 3

This bijection is to send any principal ideal (n) to the equivalence class with representative n. We first
show that this map is injective. Suppose n ~ m. Then (n) = rn ¥r € R, and (m) = rm Vr € R. But we
have m = wun for some unit v in R. So (m) = r(un). Let us show that these sets are equal. Clearly for
any ru(n) € (m), ru = r' € R and 7'n € (n), so (m) C (n). Also, take any rn € (n). Let v’ = ru~!,
then r'(un) = rn € (m). So (n) C (m) and therefore (m) = (n). Thus m ~ n — (m) = (n). Map is also
clearly surjective as if we take some representative of an equivalence class n, it is an element in R and thus
inherently generates some principal ideal.

Problem 4

Suppose that f can be written as g(z)h(x) for deg(g) = m,deg(h) = n < deg(f),m < n. Let g(z) =
@™ + -+ ag, h(x) = bpx™ + -+ +bo, f(T) = Cgnx™ ™ 4+ - -+ 4+ co. We have that the constant coefficient
in f(x) is apbp. We know that p may only be in the factorization of either ag or bg. Choose p | ag. By strong

induction, we will show that p | a;Vi < m. Suppose p | a;,Vj < ¢ — 1. Then,

¢ = ajbo + ai—1b1 + -+ + agb;



By our inductive hypothesis we have that:
¢; = ajbg + pr

for some r € R Also, since i <m <m+1<m+mn, p|c;: Therefore, for some ' € R,
aibo = p(r —r')

Since p 1 by, p | a; Therefore, we can conclude that p | a,, and therefore p | a,,b,. However, we also have
p 1 amby,. This implies that a,,b, admits two non-associative factorizations which cannot be true in a UFD.
Therefore, contradiction.

Problem 5

We can think of this polynomial as being in the ring of polynomials with coefficients in C[y]. Since C is
a field, and therefore a UFD, C[y] is a UFD, and then (C[y])[z] is a UFD by the same logic. Thus we
can apply the more general criterion proved in Problem 4. We have coefficients ay = 1,a¢9 = (y* — 1).
v —1=(y+1)(y—1),s0 (y+1) | (¥*—1)but (y+1)*{(y*—1)and (y+1){1=ar. (y+1)is clearly
irreducible as it is linear. Thus, this polynomial is irreducible.

Problem 6

We show that this is an ideal. First we show that it is an additive subgroup. We have that 0 = Ory + Ors +
«oo40rs € (r1,...,75). Also, suppose ¢ = a;ry +asre + -+ agsrs € (r1,...,7s). Also, d = —ayr1 + —agrs +
st —agrs € (r1,...,75). c+d=r1(a1 —a1) + - +rs(as —as) =r10+ -+ 17,0 = 0 by distributivity thus
d=—cé€ (ry,...,rs) and therefore (r1,...,7s) contains inverses. Also, suppose a = a171 + asrs + - -+ asrs,
b = byry + barg + -+ + bsrs. By distributivity, a + b = (a1 + b1)r1 + -+ + (as + bs)rs € (r1,...,75).
Thus, (r1,...,7s) is an additive subgroup. Also, let » € R. Then for any a7y + -+ + asrs € (r1,...,7s),
r(airy + -+ agrs) = (ray)ry + - -+ (ras)rs € (r1,...,rs). Thus it is an ideal.

Problem 7

Suppose that I(f) # R. In this case, I(f) must be contained in some maximal ideal M # R. Consider then

the ring of polynomials R/M[z]. We know that since R/M is a field, R/M[z] must be at least an integral

domain. We also have that g(x) and h(z) cannot be zero in this integral domain for the following reason.

Let g(x) = ama™ +---+ag, h(x) = bpx™+- -+ by, f(2) = Cmant™ "+ +co. If g(x), h(x) are zero in this

domain, then all of their coefficients are in I(f). If this is the case, then for g(x) (and therefore also h(x),
9(®) = (@ntmPnym + -+ agro)x™ + - + (GnymSntm + - + aoso)

where r;, s; € R. Linear combinations of these coefficients are then:
tm (QntmTrtm + -+ aoro) + -+ - + to(@ntmSntm + -+ + aoSo)
which by distributivity is:
(ntmtmTnim + -+ aotmro) + -+ + (@ntmtoSntm + - + aotoso)

an+m(tmrn+m + -+ t03n+m) + -+ aO(tmro + - tOSO)

which then implies that I(g) C I(f) # R which cannot be the case. So we have that f(z), g(x) # 0 € R/M|[x],
but f(z)g(z) =0 € R/M]|x], as all the coefficients of f(z)g(x) are clearly linear combinations of coefficients
of f(x)g(x). This is a contradiction as R/M|xz] is an integral domain.



Problem 8

a) We have that (v +1)? + (z+1)+1=(22+1+2+1+1) =2%+ 2+ 1 whichisin 0+ (22 + 2 + 1) in
the quotient ring. Also, 22 + x + 1 is in 0 + (22 +  + 1) in the quotient ring. So a = (z + 1) + I,z + I.

b) We have that #? +x + 1 has roots at a. Since it is a quadratic, these roots are its factors. Choose o = .
Then 22 + 2z + 1= (z + a)(z + (a + 1).

Problem 9

We have that this polynomial is irreducible as it has no roots and is cubic, f(0) = 1, f(1) = a, f(a) =
a+1, fla+1)=a.

Problem 10

a) Since 22 — « is a quadratic, it is sufficient to show that if there exists an « such that 22 — « has no

roots, 2 — « is irreducible. The roots of 2 — o must satisfy the equation 22 = o. We know that the set
z?|z € Z, can have size at most p — 1, as both 12 =1 and (p — 1)? = 1. Thus, there exists some a such
that there is no z such that 22 = a and thus there exists some « such that 22 — « is irreducible.

b) Since z2—a is irreducible, and therefore the ideal generated by it is maximal, the quotient ring Z, /(2% —«)
is a field. It has p? elements as its elements are the remainders of polynomial division by 22 — o which
are nx + m, where n € [0,p — 1](p choices),m € [0,p — 1](p choices).

Problem 11

a) Let us show that this is a subring of K[x]. We have that it is an additive subgroup by the fact that the
zero polynomial has a; = 0, also, if we have ag + asx? + asz® + - - 4+ a,2" € R, then —ag + —asx? +
—a3z® + -+ — ap,z™ € R. Also, by distributivity,

(ag+agr?+- - +anz™ +bo+bax? +- - bpx™) = (ag+bo) + (ag +bo)x* +- -+ (A + by )™+ a"2" € R

Also, since the coefficient of the linear term of the multiplication of two polynomials is equal to
a1bg + biag, and ay,b; = 0, the linear term of the multiplication of two polynomials in R will also be in
R. So it is is a subring.

b) As a counterexample, if we choose K = C, we see that the polynomial z* — 2 € R C C[z] has the two
factorizations in R, (22 — ﬂ)(mz +2), (2% + \/52)2



