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Problem 1

2)

b)

We observe that the permutation (z y)(z t) can be writtenas o = (v y 2)(y 2 t).
This is because we can see that o(x) = y,0(y) = z,0(2) = t,0(t) = 2.

Since any element in A, is a product of pairs of transpositions, and each
pair of transpositions can be written as a product of 2 3-cycles, all elements
in A, can be generated by some set of 3-cycles.

Problem 2

a)

The permutation with the least disorders is the identity permutation in S,,.
This is because if we pick any ¢, no pair (i,5),i < j will be a disorder
as 0; = j > i = o0y for 0 = Id. Thus the identity permutation has 0
disorders. This must be the smallest number of disorders as you cannot have
a "negative” number of disorders.

The permutation with the most disorders is (k) = n—k+1, i.e. the "reverse”
of the identity map. We will show that o makes every pair (¢,j),i < j a
disorder. Choose ¢ Then o; = n — ¢+ 1. Choose arbitrary j > i. Then:

j>i
<
Jj:n+1—j<n+1—i20'7;

Thus, for every pair (4,j) if 0; > o, and thus every pair is a disorder.
Clearly we cannot do better than every pair being a disorder and thus this
permutation has the maximum number of disorders.

Problem 3

In the last homework we showed that {(1 2),(23),(34),---,(nn—1)} generates
Sn, so it is sufficient to show that we can create any adjacent transposition



from (1 2) and (1234 --- n). Let us say we want to create the transposition
(k k+1) € S,,: We contend that this can be written as:

(1234 - n)*1(12)(1234 ... n)n= k!

Call (1234 --- n), 0. We then observe that: o*~lgnFtl = gh=1ltn-k+l —
o™ = Id. So we can rewrite this as:

(1234 n)1(12) (1234 - n)k17"
From the last homework we know that this simply becomes:

(0(1),0(2))

which is just

(k,k+1)

Since any permutation can be decomposed into a product of transpositions,
which can itself be decomposed into a product of adjacent transpositions, which
can then be decomposed into (1 2) and (1234 --- n), S, is generated by this
set.

Problem 4

We can break this case down into 4 subcases:

In the first case, we let py < p; and pr < p;: In this case, in p, (3, k) is
a disorder and (k,j) is an order. In o = 7p, (i,k) is an order, and (k,7) is a
disorder. So there is no change in parity between o and p for such pairs as the
net change in number of disorders is zero.

In the second case, we let pi, > p; and py < p;: In this case, in p, (i,k) is
an order and (k, ) is also an order. In o, (i, k) is a disorder and (k, j) is also
a disorder. Sine 2 disorders are added, this does not change the parity of the
number of disorders.

In the third case, we let py < p; and pp > p;: In this case, in p, (i, k) is a
disorder and (k, j) is also a disorder. In o, (i,k) becomes an order and (k,j)
also becomes an order. Thus, since the net change in disorders is 2, these pairs
do not cause a change in parity from the number of disorders between o and p.

In the last case, we let py > p; and pr > p;: In this case, in p, (i, k) is an
order and (k,7) is a disorder. In o, (i,k) is a disorder and (k,j) is an order.
Thus these types of pairs do not change the number of disorders between o and
p-

Thus, from this we can conclude that if the number of disorders in the subset
of X for p is k, then the number of disorders in the subset of X for o will be
k+2m—2n = k+2(m—n) where m is the number of pairs of the type discussed
in case 2, and n is the number of pairs of the type discussed in case 3. Thus,
since we are adding an even number to k, the parity of k + 2(m —n) will be the
same as the parity of k.



Problem 5

Like the last problem we will break this down into 4 cases. We will break this
down into 4 cases.

In the first case, we let py < p; and py < p;: In this case, in p, (i,k) is a
disorder and (j,k) is a disorder. In o = 7p, (i,k) is a disorder, and (j, k) is a
disorder. So there is no change in parity between o and p for such pairs as the
net change in number of disorders is zero.

In the second case, we let p, > p; and pp < p;: In this case, in p, (i,k)
is an order and (j, k) is a disorder. In o, (i,k) is a disorder and (j, k) is also
a disorder. Sine 2 disorders are added, this does not change the parity of the
number of disorders.

In the third case, we let p < p; and pr > p;: In this case, in p, (4,k) is a
disorder and (j, k) is also a disorder. In o, (i,k) becomes an order and (j, k)
also becomes an order. Thus, since the net change in disorders is 2, these pairs
do not cause a change in parity from the number of disorders between o and p.

In the last case, we let py > p; and pi > p;: In this case, in p, (i, k) is an
order and (j,k) is a disorder. In o, (i,k) is a disorder and (j, k) is an order.
Thus these types of pairs do not change the number of disorders between o and
p-

Thus, from this we can conclude that if the number of disorders in the subset
of X for p is k, then the number of disorders in the subset of X for o will be
k+2m—2n = k+2(m—n) where m is the number of pairs of the type discussed
in case 2, and n is the number of pairs of the type discussed in case 3. Thus,
since we are adding an even number to k, the parity of k + 2(m —n) will be the
same as the parity of k.

Problem 7

a) Let’s show that conjugacy is an equivalence relation. First, we will show
that it is reflexive. For any a, choose g = e. Then a = gag~' = eae and thus
a~ a.

Second, we will show that it is symmetric. Let a ~ b. Then b = gag~! for
some g € G. Then:

b=gag™*

g—lb: ag—l
g thg =a

Let © = ¢!, then:

zbrl=a

Since z is an element in G, b ~ a.

Last, we will show that it is transitive. Let a ~ band b ~ ¢. Then b = glagfl
and ¢ = gabgy ' Then:
¢ = gabgy !



¢ = gagragy ‘g5
We observe that (gggl)(gflggl) =e. So gflggl = (g291) 7! Let = gag1:

¢=zazx~!

Since ¢ € G, a ~ c.

Problem 8

a)

Let’s represent a point (z,y) € R? in polar coordinates as (rcos(6), rsin(f)).
Without loss of generality let O = (0,0) and let the line be y = 0.

Choose an arbitrary point p, such that r =r;,0 = 0;.

We now compute SRS™!.

After S~1, p becomes (r;cos(—0;),r;sin(—0;)).

After R, p becomes (r;cos(—0; + o), risin(—0; + ).

After S, p becomes (rjcos(—(—0; + a) + 2a, risin(—(—6 + «) + 2¢)).
Simplifying, p becomes (r;(0; + «),7;(0; + o)) which is just R, the CCW
rotation by a.

We again represent p = (x,y) and the origin and line the same way.

We now compute RSR™!.

After R~ p becomes (r;cos(6; — o), risin(0; — ).

After S, p becomes (rjcos(—(0; — o) + (—2a)),ricos(—(0; — a) + (—20))).
After R, p becomes (r;cos((—(0; — o) + (—2a)) + ), rcos((—(8; — o) +
(—2a))) + o).

Simplifying, p becomes (r;cos(—6;),r;sin(—0;)), which is just S, the reflec-
tion about the origin.

Problem 9

a)

Let’s prove that this is a subgroup. First, we must show that e € Z(G). For
any y € G,

soe€(.

Second, we must show that if z € Z(G), this implies that 271 € Z(G). Let
x € Z(G). Then:

Ty = yx
for any y € G. But then:

J:yx71 = yxx71 =y



yx_1 = x_lxyx_l = x_ly

so clearly 271 also in Z(G).

Finally we must show closure. Let 1,22 € Z(G). Then we must show that:
(z122)y = y(2172)
for any y € G. Multiplying on both sides by xl_l yields:
oy (w1w2)y = 2y 'y (2122)
but since ! also is in Z(@), this becomes:
oy (m1a)y = ya ! (2120)

which yields

L2y = Yx2
which we know to be true as we had z2 € Z(G).
Thus Z(G) is a subgroup.



