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Problem 1

a) We observe that the permutation (x y)(z t) can be written as σ = (x y z)(y z t).
This is because we can see that σ(x) = y, σ(y) = z, σ(z) = t, σ(t) = z.

b) Since any element in An is a product of pairs of transpositions, and each
pair of transpositions can be written as a product of 2 3-cycles, all elements
in An can be generated by some set of 3-cycles.

Problem 2

a) The permutation with the least disorders is the identity permutation in Sn.
This is because if we pick any i, no pair (i, j), i < j will be a disorder
as σj = j > i = σi for σ = Id. Thus the identity permutation has 0
disorders. This must be the smallest number of disorders as you cannot have
a ”negative” number of disorders.

b) The permutation with the most disorders is σ(k) = n−k+1, i.e. the ”reverse”
of the identity map. We will show that σ makes every pair (i, j), i < j a
disorder. Choose i Then σi = n− i+ 1. Choose arbitrary j > i. Then:

j > i

−j < −i

σj = n+ 1− j < n+ 1− i = σi

Thus, for every pair (i, j) if σi > σj and thus every pair is a disorder.
Clearly we cannot do better than every pair being a disorder and thus this
permutation has the maximum number of disorders.

Problem 3

In the last homework we showed that {(1 2), (2 3), (3 4), · · · , (n n−1)} generates
Sn, so it is sufficient to show that we can create any adjacent transposition
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from (1 2) and (1 2 3 4 · · · n). Let us say we want to create the transposition
(k k + 1) ∈ Sn: We contend that this can be written as:

(1 2 3 4 · · · n)k−1(1 2)(1 2 3 4 · · · n)n−k+1

Call (1 2 3 4 · · · n), σ. We then observe that: σk−1σn−k+1 = σk−1+n−k+1 =
σn = Id. So we can rewrite this as:

(1 2 3 4 · · · n)k−1(1 2)(1 2 3 4 · · · n)k−1−1

From the last homework we know that this simply becomes:

(σ(1), σ(2))

which is just
(k, k + 1)

Since any permutation can be decomposed into a product of transpositions,
which can itself be decomposed into a product of adjacent transpositions, which
can then be decomposed into (1 2) and (1 2 3 4 · · · n), Sn is generated by this
set.

Problem 4

We can break this case down into 4 subcases:
In the first case, we let ρk < ρi and ρk < ρj : In this case, in ρ, (i, k) is

a disorder and (k, j) is an order. In σ = τρ, (i, k) is an order, and (k, j) is a
disorder. So there is no change in parity between σ and ρ for such pairs as the
net change in number of disorders is zero.

In the second case, we let ρk > ρi and ρk < ρj : In this case, in ρ, (i, k) is
an order and (k, j) is also an order. In σ, (i, k) is a disorder and (k, j) is also
a disorder. Sine 2 disorders are added, this does not change the parity of the
number of disorders.

In the third case, we let ρk < ρi and ρk > ρj : In this case, in ρ, (i, k) is a
disorder and (k, j) is also a disorder. In σ, (i, k) becomes an order and (k, j)
also becomes an order. Thus, since the net change in disorders is 2, these pairs
do not cause a change in parity from the number of disorders between σ and ρ.

In the last case, we let ρk > ρi and ρk > ρj : In this case, in ρ, (i, k) is an
order and (k, j) is a disorder. In σ, (i, k) is a disorder and (k, j) is an order.
Thus these types of pairs do not change the number of disorders between σ and
ρ.

Thus, from this we can conclude that if the number of disorders in the subset
of X for ρ is k, then the number of disorders in the subset of X for σ will be
k+2m−2n = k+2(m−n) where m is the number of pairs of the type discussed
in case 2, and n is the number of pairs of the type discussed in case 3. Thus,
since we are adding an even number to k, the parity of k+2(m−n) will be the
same as the parity of k.
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Problem 5

Like the last problem we will break this down into 4 cases. We will break this
down into 4 cases.

In the first case, we let ρk < ρi and ρk < ρj : In this case, in ρ, (i, k) is a
disorder and (j, k) is a disorder. In σ = τρ, (i, k) is a disorder, and (j, k) is a
disorder. So there is no change in parity between σ and ρ for such pairs as the
net change in number of disorders is zero.

In the second case, we let ρk > ρi and ρk < ρj : In this case, in ρ, (i, k)
is an order and (j, k) is a disorder. In σ, (i, k) is a disorder and (j, k) is also
a disorder. Sine 2 disorders are added, this does not change the parity of the
number of disorders.

In the third case, we let ρk < ρi and ρk > ρj : In this case, in ρ, (i, k) is a
disorder and (j, k) is also a disorder. In σ, (i, k) becomes an order and (j, k)
also becomes an order. Thus, since the net change in disorders is 2, these pairs
do not cause a change in parity from the number of disorders between σ and ρ.

In the last case, we let ρk > ρi and ρk > ρj : In this case, in ρ, (i, k) is an
order and (j, k) is a disorder. In σ, (i, k) is a disorder and (j, k) is an order.
Thus these types of pairs do not change the number of disorders between σ and
ρ.

Thus, from this we can conclude that if the number of disorders in the subset
of X for ρ is k, then the number of disorders in the subset of X for σ will be
k+2m−2n = k+2(m−n) where m is the number of pairs of the type discussed
in case 2, and n is the number of pairs of the type discussed in case 3. Thus,
since we are adding an even number to k, the parity of k+2(m−n) will be the
same as the parity of k.

Problem 7

a) Let’s show that conjugacy is an equivalence relation. First, we will show
that it is reflexive. For any a, choose g = e. Then a = gag−1 = eae and thus
a ∼ a.

Second, we will show that it is symmetric. Let a ∼ b. Then b = gag−1 for
some g ∈ G. Then:

b = gag−1

g−1b = ag−1

g−1bg = a

Let x = g−1, then:
xbx−1 = a

Since x is an element in G, b ∼ a.

Last, we will show that it is transitive. Let a ∼ b and b ∼ c. Then b = g1ag
−1
1

and c = g2bg
−1
2 . Then:

c = g2bg
−1
2
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c = g2g1ag
−1
1 g−1

2

We observe that (g2g1)(g
−1
1 g−1

2 ) = e. So g−1
1 g−1

2 = (g2g1)
−1 Let x = g2g1:

c = xax−1

Since x ∈ G, a ∼ c.

Problem 8

a) Let’s represent a point (x, y) ∈ R2 in polar coordinates as (rcos(θ), rsin(θ)).
Without loss of generality let O = (0, 0) and let the line be y = 0.

Choose an arbitrary point p, such that r = ri, θ = θi.

We now compute SRS−1.

After S−1, p becomes (ricos(−θi), risin(−θi)).

After R, p becomes (ricos(−θi + α), risin(−θi + α)).

After S, p becomes (ricos(−(−θi + α) + 2α, risin(−(−θ + α) + 2α)).

Simplifying, p becomes (ri(θi + α), ri(θi + α)) which is just R, the CCW
rotation by α.

b) We again represent p = (x, y) and the origin and line the same way.

We now compute RSR−1.

After R−1, p becomes (ricos(θi − α), risin(θi − α)).

After S, p becomes (ricos(−(θi − α) + (−2α)), ricos(−(θi − α) + (−2α))).

After R, p becomes (ricos((−(θi − α) + (−2α)) + α), ricos((−(θi − α) +
(−2α))) + α).

Simplifying, p becomes (ricos(−θi), risin(−θi)), which is just S, the reflec-
tion about the origin.

Problem 9

a) Let’s prove that this is a subgroup. First, we must show that e ∈ Z(G). For
any y ∈ G,

ey = ye

y = y

so e ∈ G.

Second, we must show that if x ∈ Z(G), this implies that x−1 ∈ Z(G). Let
x ∈ Z(G). Then:

xy = yx

for any y ∈ G. But then:

xyx−1 = yxx−1 = y
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yx−1 = x−1xyx−1 = x−1y

so clearly x−1 also in Z(G).

Finally we must show closure. Let x1, x2 ∈ Z(G). Then we must show that:

(x1x2)y = y(x1x2)

for any y ∈ G. Multiplying on both sides by x−1
1 yields:

x−1
1 (x1x2)y = x−1

1 y(x1x2)

but since x−1
1 also is in Z(G), this becomes:

x−1
1 (x1x2)y = yx−1(x1x2)

which yields
x2y = yx2

which we know to be true as we had x2 ∈ Z(G).

Thus Z(G) is a subgroup.

b)
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