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Problem 1

a) We have that ⟨6⟩ is the kernel of the homomorphism ϕ : Z24 → Z6, ϕ : x → x mod 6. The image of Z24
under this homomorphism is the numbers 0 through 5. Thus we see that quotient group has order 6 and
its cosets are ⟨6⟩, 1 + ⟨6⟩, 2 + ⟨6⟩, 3 + ⟨6⟩, 4 + ⟨6⟩, 5 + ⟨6⟩.

b) We have that SLn(R) is the kernel of the homomorphism ϕ : x → det(x), ϕ : GLn(R) → R∗. The image
of GLn(R) is all of R∗. Then the quotient group is isomorphic R∗ and has cosets of the form aSLn(R),
a ∈ R∗.

Problem 2

a) The key observation here is that every continuous bijection R → R must be monotonically increasing or
decreasing, as otherwise it will not be injective and therefore not a bijection. Also, without this condition,
a function could be bounded and therefore not surjective. Thus, we proceed to show that the set described
under composition is a subgroup.

The function y = x, which is monotonically increasing, is the identity. To check that inverses are in the
set, suppose we have a function f in the set. Let f be monotonically increasing. Then f(x1) < f(x2)
for any x1, x2 ∈ R such that x1 < x2. Thus, for any f(x1) < f(x2), we will have x1 < x2 and therefore
f−1 will also be monotonically increasing. Then let f be monotonically decreasing. So f(x1) > f(x2)
for x1 < x2. Then for any f(x2) < f(x1), x2 > x1 and f−1 will be monotonically decreasing. Finally
we must show that the group is closed under composition. Say we have a monotonically increasing
function f , and a function g in the set. Consider f ◦ g. If g is monotonically increasing, then walking
positively along g will produce a set of increasing numbers which when passed up to f will produce
a set of increasing real numbers. Then let g be monotonically increasing. Walking positively along g
will pass up a set of decreasing numbers to f which will produce a set of decreasing numbers. Thus, a
monotonically increasing function composed with either an increasing or decreasing function produces
another increasing or decreasing function. A similar closure follows when f is monotonically decreasing.
SO it is a subgroup.

b) We show that Isom(Rn) is a subgroup. First, we see that it has the identity element e which sends every
point in Rn to itself. This clearly preserves distances, as |y − x| = |y − x| for any x, y ∈ Rn. Next, we
show that if f ∈ Isom(Rn), this implies that f−1inIsom(Rn). We know that for any two points in the
image of f , which is simply Rn of equal distance, f−1 will map them to two points of equal distance
in the domain of f , which is also Rn. So f−1 preserves the distances between any two points in its
domain (image of f , Rn), and its range (domain of f , Rn). So f−1 is also in Isom(R). Finally we need
to check that the composition of two isometries is also an isometry. We have that for any x, y ∈ Rn,
|f(y)− f(x)| = |g(y)− g(x)| = |y− x| for f, g ∈ Isom(Rn). Let f(x) = x1, f(y) = y1. Then x1 and y1 are
the same distance as x and y. Then g(x1) and g(y1) are also the same distance apart as x1 and y1 and
transitively the same distance aparty as x and y. So |g(f(y)) − g(f(x))| = |y − x| for any points in Rn

and thus g ◦ f ∈ Isom(RN ) and so it is closed under composition.
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Problem 3

a) We see that the function which maps all monotonically increasing functions to 0 and all monotonically
decreasing functions to 1 is a homomorphism from S0

R to Z2. This structure preserving behavior was
shown in the closure section of 2b i.e. let f1, f2 be increasing and g1, g2 decreasing,

ϕ(f1 ◦ f2) = 0 = 0 + 0 = ϕ(f1) + ϕ(f2)

ϕ(f1 ◦ g1) = 1 = 0 + 1 = ϕ(f1) + ϕ(g1)

ϕ(g1 ◦ f1) = 1 = 1 + 0 = ϕ(g1) + ϕ(f1)

ϕ(g1 ◦ g2) = 0 = 2 ≡ 0 mod 2 = 1 + 1 = ϕ(g1) + ϕ(g2)

b) We see that the function which maps all rotations and translations to 0 and all reflections to 1 is a
homomorphism from Isom(Rn) to Z2. This is because the composition of rotations is a rotation, the
composition of translations is a translation, and the composition of a rotation and translation is a rotation
with a translation. But the composition of a reflection with a rotation is a reflection, a reflection with a
translation a reflection, but a reflection with a reflection is a rotation. This structural property within
Isom(Rn) gives the described homomorphism.

Problem 4

a) For x, y ∈ G, ϕ(x) + ϕ(y) = nx+ ny. Since G is abelian, this becomes n(x+ y) = ϕ(x+ y), and thus ϕ is
a homomorphism.

b) Since H is cyclic, it is either isomorphic to Zn for some finite n, or Z.
Suppose that H is isomorphic to Zn. Then every element in H can be written as hm, 0 ≤ m < n
where h is a generator in H. We then have that for any (hm, k) ∈ H ×K, we have that ϕ|H|((h

m, k)) =

((h|H|)m, k|H|) = (e, k|H|). Thus, we then have that ϕ|H|(H ×K) ⊆ H ×K if H is not the trivial group.
Then, since every element in g is isomorphic to an element in H ×K, we have that the image of G under

the homomorphism ϕ|H| will be the subgroup of G isomorphic to {(e, k|H|
1 ), (e, k

|H|
2 , . . . , (e, k

|H|
i )}. If H

is not trivial, there will be elements in G which map to elements of the form (hm, k), m ̸= 0, and then
ϕ(G) < G.

Suppose that H is isomorphic to Z. Then every element in H can be written as hm, m ∈ Z and
thus every element in H ×K is (hm, k), k ∈ K. We then observe that the image of H ×K under ϕ2 is
{· · · , (h−4, k21), (h

−2, k22), (e, k
2
3), (h

2, k24), (h
4, k25), · · · }. Since the image of H×K under a homomorphism

is isomorphic to the image of G under a homomorphism, this is isomorphic to the subgroup of elements
in G which map to elements of the form (h2m, k), m ∈ Z, k ∈ K. But since there is an element in g which
maps to (h, k), which is not in the image, it will not be in ϕ(G). Thus ϕ2(G) < G.

c) For this, we observe that ϕn(Q) = Q for any n. We show this by contradiction. Suppose k
m ∈ Q and

k
m /∈ ϕn(Q) for some n. But k

mn ∈ Q, and then ϕn(
k

nm ) = k
m which implies k

m ∈ ϕn(Q). Contradiction.

From part b we have that ϕn(G) = G for any n implies that G is not isomorphic to the direct product
of H ×K, where H is some cyclic group. Any direct product of cyclic groups can be written in the form
H ×K, where H is one component of the direct product and K is the direct product of the rest of the
components. So Q cannot be written as the direct product of cyclic groups.
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Problem 5

a) We examine this group component by component to find the kernel. Take an arbitrary component
Zpni . For x ∈ Zpni , define ϕp(x) = px. If x in the kernel, then px = ℓpni for some ℓ ∈ Z. We
then have x = ℓpni−1, and observe that ker(ϕp) is the set of multiples of pni−1 mod pni , which are
0, pni−1, 2pni−1, 3pni−1, · · · (p − 1)pni−1. This finding is easily extended to the direct product. We then
define an isomorphism f from (Zp)

k to H as follows. For (x1, x2, x3, · · ·xk) ∈ (Zp)
k,

f((x1, x2, x3, · · · , xk)) = (x1p
n1−1, x2p

n2−1, x3p
n3−1, · · ·xkp

nk−1)

We will now show that f is an isomorphism, by showing injectivity, surjectivity, and the homomorphism
property: Let

(x1p
n1−1, x2p

n2−1, · · ·xkp
nk−1) = (y1p

n1−1, y2p
n2−1, · · · ykpnk−1)

We take an arbitrary component. Let xip
ni−1 = yip

ni−1. Then xi = xi
pni−1

pni−1 = yi. So f((x1, . . . , xk)) =

f((y1, . . . , yk)) → (x1, . . . , xk) = (y1, . . . , yk). For surjectivity, since H is a vector multiples of pni mod
pni and (Zp)

k is a vector of numbers 0, 1, . . . , p− 1, there will always be x ∈ (Zp)
k such that f(x) = h for

any h ∈ H.

Last, we show the homomorphism property.

f((x1, . . . , xk)+(y1, . . . , yk)) = ((x1+y1)p
n1−1, . . . , (xk+yk)p

nk−1) = (x1p
n1−1+y1p

n1−1, . . . , xkp
nk−1+ykp

nk−1)

= (x1p
n1−1, . . . , xkp

nk−1) + (y1p
n1−1, . . . , ykp

nk−1) = f((x1, . . . , xk)) + f((y1, . . . , yk))

b) We do this component by component. We see that the quotient group Zpni /Zp must be cyclic, as it is
a quotient of a cyclic group. It will also have order pni−1, by Lagrange’s theorem. Thus the quotient
of each component is isomorphic to Zpni−1. Then, we have that the quotient G/H is isomorphic to

Zpn1−1 × . . .× Zpnk−1

, which is isomorphic to K by the first isomorphism theorem.

c) We know that G is a finitely generated Abelian group, as it can be generated by k generators

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), · · · , (0, 0, . . . , 0, 1)

. Thus it is isomorphic to some direct product of cyclic groups with orders of powers of primes by the
Fundamental Theorem of finitely generated abelian groups. But G is the group yielded by this theorem
itself exactly. The theorem states that this group is unique, up to permutation of components. But since
we have defined an ordering, these components are determined exactly uniquely.

Problem 6

We first look at the stabilizer of the identity. The orbit of the identity is just itself, as conjugating the
identity by anything yields just the identity. By the orbit stabilizer theorem, we know that its stabilizer
must be a subgroup of order 12, and therefore its stabilizer is A4 itself.

Next, we look at the pairs of transpositions. We observe that Orb((1 2)(3 4)) is the conjugacy class of
pairs of cycles. This is because (1 3 2)(1 2)(3 4)(1 2 3) = (1 3)(2 4) and (1 2 3)(1 2)(3 4)(1 3 2) = (1 4)(2 3).
We observe that the orbit cannot be any larger as the cycle structure will not change under conjugation.
Also since orbits are equivalence classes, the other elements of the conjugacy class have the same orbits.
From this, we have that the orbit of these elements has order 3, and since the order of the group is 12, the
stabilizer must have order 4. Since the stabilizer is a subgroup, and only the V4 subgroup of A4 has order 4,
the stabilizer of these elements must be V4.

Next, we look at the the 3-cycles. After some computation we find that they are broken down into 2
orbits of order 4, {(1 2 3), (1 3 4), (2 4 3), (1 4 2)} and {(1 3 2), (2 3 4), (1 2 4), (1 4 3)}. This implies that the
stabilizer of a 3 cycle has order 3 from orbit stabilizer theorem. The only subgroups with order 3 in A4 are
subgroups composed of the identity, a 3-cycle, and its inverse. Thus, we have that the stabilizer for every 3
cycle is the subgroup composed of the identity, itself, and its inverse.
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Problem 7

a) To do this we must show that the group axioms hold. First, for any set in the power set {i1, · · · , ik}, if
e is the identity permutation in Sn, e · {i1, · · · , ik} = {e(i1), · · · , e(ik)} = {i1, · · · , ik}. So the identity
axiom holds. We must then check that the group action is associative. If we consider an aribtrary
member ij of the arbitrary subset {i1, · · · , ik}, and the arbitrary permutations σ1, σ2 ∈ Sn, we have that
σ1(σ2(ij)) = σ1 ◦ σ2(ij) as this is how function composition works. So the group action is well defined.

b) We observe that for any element in the power set of size k, it can be ”relabeled” by some permutation in
Sn to form any element of size k in the power set. Based on this, there are n+ 1 orbits in the power set,
with the 1 added due to the empty set.

c) Let’s find the stabilizer of {1, · · · , k}. If we have σ · {1, · · · , k} = {1, · · · , k} for some σ ∈ Sn, it means we
have σ(1) ∈ {1, · · · , k}, σ(2) ∈ {1, · · · , k}, · · · , σ(k) ∈ {1, · · · , k}, and also σ(k+1) ∈ {k+1, · · · , n}, σ(k+
2) ∈ {k + 1, · · · , n}, · · · , σ(n) ∈ {k + 1, · · · , n}. We can count the number of these permutations that
exist by noting that σ has k ways to map 1, k − 1 ways to map 2, and so on. We then note that there
are n − k ways to map k + 1, n − k − 1 ways to map k + 2, and so on. Thus we have characterized the
stabilizer. The size of the stabilizer of an element of size k is then (n− k)!k!

d) We have that the size of Sn is n!, and the size of the stabilizer of an element of size k is (n− k)!k!. From
the orbit-stabilizer theorem we have that the size of the orbit of an element of size k is then n!

(n−k)!k! .

This is just
(
n
k

)
, which makes sense.

Problem 8

We know that since the action is transitive, there exists an element g ∈ G such that g · y = x. We content
that for this element g, Gy = g−1Gxg. We have:

y = y

g · y = g · y

we choose arbitrary h ∈ Gx:
g · y = hg · y

g−1g · y = g−1hg · y

y = g−1hg · y

This implies that for any h ∈ Gx, g
−1hg ∈ Gy, which implies that g−1Gxg ⊆ Gy. To prove that Gy ⊆

g−1Gxg, we must show that for any k ∈ Gy, there exists h ∈ Gx such that k = g−1hg, or gkg−1 = h. We
have:

x = x

g−1 · x = g−1 · x

Choose arbitrary k ∈ Gy

g−1 · x = kg−1 · x

x = gkg−1 · x

Since this implies that gkg−1 is a stabilizer of x, we know that there exists some h ∈ Gx such that gkg−1 = h.
So then we have Gy ⊆ g−1Gxg, and Gy = g−1Gxg.
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Problem 9

a) We start by defining the rotations of the cube. In every rotation of the cube, one of the 6 faces will be on
top. Once this face is selected, there are 4 ways the cube can be rotated. Since each of the top 4 corners
is affixed to a corresponding bottom corner, once the top 4 corners are determined the cube is fixed. So
we can see that any rotation of the cube can be thought of as a choice of top face and a rotation about
the axis going through that face and the opposite face. We will have then diagonals, a, b, c, d, which will
themselves have corners a1, a2, b1, b2, c1, c2, d1, d2.

b) We describe the stabilizer of a diagonal x. Suppose that x1 is the corner that is on top in the start
position and x2 is the corner that is on the bottom. When x1 is in its start position, the cube can be
held still, rotated 120 degrees about the diagonal, or rotated 240 degrees about the diagonal. Likewise,
x2 can be placed x1’s start position on top, by a rotation by 180 degrees about the axis between the
midpoints of two opposite edges, held still, or rotated by 120 or 240 degrees. This gives 6 elements in
the stabilizer which makes sense, as the group has order 24 and the diagonals constitute one orbit of
order 4. If an element other than the identity (holding x1 in its start position and not moving) holds all
diagonals constant, one of these 6 rotations must do that. However, we see that the 4 rotations by 120
and 240 move 3 diagonals, and the one rotation which swaps x1 and x2 moves 2 diagonals. Thus, the
only rotation in the stabilizer of any element that holds all diagonals constant is the identity itself. So
the intersection of the stabilizers will just be the identity.

c) We see that every rotation applied to all the diagonals constitutes a bijection, as 4 diagonals are moved
to 4 diagonals, and no two diagonals are moved to the same place (would deform the cube). We see that
it has an identity, and that every rotation has an opposite(inverse) rotation, and that two rotations will
always go to another rotation as each individual rotation preserves the orientation of the cube. So we
know that G is isomorphic to some subgroup of S4 but G has order 24, so since it is isomorphic to a
subgroup with order 24, it is isomorphic to S4 itself.
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