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Problem 1

We compute the orders of |Fix(d)| for all d ∈ D6 and then apply Burnsides
lemma to find the number of orbits, which is the number of necklaces invariant
under rotation and reflection. We see initially that there are 36 necklaces, as
there are 6 jewels that can each be chosen 3 ways.

Obviously,
|Fix(Id)| = 36

For a rotation by 60 degrees, we see that all jewels must be the same color,
otherwise the necklace will change under the reflection at at least one of the
jewels. There are 3 ways to do that, because there are 3 colors.

|Fix(Rot60)| = 3

and we also have
|Fix(Rot300)| = 3

by symmetry. For a rotation by 120 degrees, we have that jewels offset by 2
from eachother must be identical. This yields us 2 sets of jewels, jewels 1, 3, 5
and jewels 2, 4, 6 that must be identical. There are 3 ways to choose the color
of each of these sets. Thus we have

|Fix(Rot120)| = 9

and also
|Fix(Rot240)| = 9

by symmetry. For
|Fix(Rot180)|

, we have 3 sets of jewels, jewels 1 and 4, jewels 2 and 5, and jewels 3 and
6, which will be moved to eachother by a 180 rotation and must be identical.
There are 3 ways to choose each set of these jewels.

|Fix(Rot180)| = 27

.
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There are 3 reflections about 2 jewels. For any such reflection, the two jewels
on the line of reflection can each be chosen in 3 ways, and then there will be
two pairs of jewels which must be the same color, and each pair can be chosen
in 3 ways. So we have |Fix(Refla)| = 81.

There are 3 reflections which mirror 3 sets of jewels. Since these reflections
exchange 3 pairs of jewels that must be the same and there are 3 ways to choose
the color of each pair, |Fix(Reflb)| = 27. We now apply Burnside’s lemma and
find that there are

36 + 3 + 3 + 9 + 9 + 27 + 3 · 81 + 3 · 27
12

= 92

orbits, or 92 necklaces which are unique under rotations and reflections.

Problem 2

We define our group action to be the rotations acting on the pairs of opposite
faces in the dodecahedron. There are 6 such pairs, and any of them can be
moved to any other by a rotation. So this group action has one orbit of order 6.

Let’s enumerate the rotations of the dodecahedron. There is 1 identity ro-
tation, 4 rotations by 72, 144, 216, and 288 degrees about each of the 6 pairs
of faces, 1 rotation by 180 degrees about each of the 15 pairs of opposite edges,
and 2 rotations by 120 and 240 degrees about each of the 10 pairs of opposite
vertices. This yields 1+4 ·6+15 ·1+10 ·2 = 60 rotations. We can confirm that
we have found all the possible rotations because any pair of opposite rotations
is stabilized by the identity, the 4 face rotations about the two faces, and the 5
edge rotations about the edges that are not adjacent to either face. Thus, the
order of any stabilizer of a pair of faces is 10, and since the order of any orbit
of a pair of faces is 6, we have that the order of the group is 6 · 10 = 60, and so
we have confirmed that we have found every rotation of the dodecahedron.

Problem 3

a) This is an immediate consequence of Burnside’s lemma. A transitive group
action is a group action with only one orbit. If |G| =

∑
g∈G

|Fix(g)|, then

1 =

∑
g∈G

|Fix(g)|

|G| , which tells us that the action has only 1 orbit, and that it

is transitive. If the orbit is transitive, we have that

∑
g∈G

|Fix(g)|

|G| = 1, which

then yields
∑
g∈G

|Fix(g)| = |G|.

b) If the group is transitive, we have

|G| =
∑
g∈G

|Fix(g)|
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Since identity fixes every element in X, we have that:

|G| = |X|+
∑

g∈G,g ̸=e

|Fix(g)|

|G| − |X| =
∑

g∈G,g ̸=e

|Fix(g)|

If every non identity element in G fixed at least 1 element, we would have
that the right side of the equation is at least |G| − 1. But since |X| ≥ 2,
the left side is at most |G| − 2. So if there is no element in G that fixes no
elements in the set, we would reach a contradiction. From this we have our
result.

c) This is equivalent to the number of permutations which sent no element to
itself. This can happen in two ways, a 5-cycle, or pair of 3-cycle and 2-
cycle. There are 5!/5 = 24 5-cycles, and 5!/(3 · 2) = 20 3-2-cycles, giving 44
derangements.

Problem 4

We see that there are 212 ways to color the dodecahedron with two colors. There
are 6 · 4 ways to rotate about the axis between two faces. There are 2 ways to
color the top face, and 2 ways to color the bottom face. Also, for any rotation
between 1 and 4 turns, there are no ”sub-cycles” of faces that get mapped to
eachother as 5 is prime. So then the top 5 and bottom 5 pentagons of the cube
must be colored 1 of 2 ways. So each face rotation fixes 24 colorings.

For a vertex rotation, we have 4 groups of 3 pentagons that get moved to
eachother by 120 and 240 rotations. Each of these can be chosen 2 ways. So a
vertex rotation also fixes 24 colorings.

For an edge rotation, we have 6 groups of 2 pentagons that get moved to
eachother. Each of these pairs can be colored in 2 ways. So an edge rotation
fixes 26 colorings.

The identity fixes 212 colorings.
We have 24 face rotations, 15 edge rotations, and 20 vertex rotations, along

with the identity. Then, by Burnside lemma

24 · 24 + 15 · 26 + 20 · 24 + 212

60
= 96

and so there are 96 unique 2-colorings of the dodecahedron under rotation.

Problem 5

We can apply Burnside’s lemma here, where the group action is Z12 acting on
distinct triples of Z12 by component-wise modular addition.
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There are
(
12
3

)
total triples, as each triad is choosing 3 distinct notes without

regard to order. Since triads that are shifts of eachother are equivalent, the
number of distinct triads is the number of orbits yielded by this group action.

Fix(0) =

(
12

3

)
We also have:

Fix(4) = 4

This is because for a group of 3 notes which each are 4 notes away from ea-
chother, shifting by 4 will send them to eachother yielding the same triad. Such
a triad has 4 unique start positions, and this is how we derive Fix(4) = 4.

An equivalent result arises for Fix(8), sending 3 notes 4 notes away from
eachother to themselves.

Fix(x) is zero for any other x ∈ Z12.
Applying Burnside’s lemma, we have(

12
3

)
+ 4 + 4

12
= 19

giving us 19 orbits, or unique triads under shifts.

Problem 6

Let R be the rotation by θ. Since the order of R is n, we have that nθ = 360k
for some k ≥ 1. We also know that gcd(k, n) = 1, as if k and n had a common
divisor d > 1, we would have n

d θ = 360k
d which would imply that the order of

R is less than n, which is a contradiction. We then observe that km = 1modn
for some m, as we have the existence of this modular inverse from the fact that
gcd(k, n) = 1.

We have that

θ =
360k

n

If k = 1, then θ = 360
n , and we are done. Otherwise, we have that

mθ =
360km

n

Since km = 1 mod n

mθ ≡ 360(ℓn+ 1)

n
= 360ℓ+

360

n
≡ 360

n

for some ℓ. But this is equivalent to the rotation Rm and Rm ∈ ⟨R⟩. So we are
done.
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Problem 7

Take arbitrary x, y ∈ R2. Let T (x) = x′, T (y) = y′. Then T−1(x′) = x, T−1(y′) =
y. Any isometry preserves both the distance and angle between two points in
the domain in its image. From this we have that the angle between x and y is
the same as the angle between x′ and y′. Let R move x′ to y′. We compute
then that TRT−1(x′) = y′, which is the same for R for any arbitrary points.
So it is shown. We also now have that the center of R is Isom(R2) itself, as
gRg−1 = R for any g ∈ IsomR2.

Problem 8

a) Conjugacy classes are equivalent to orbits of the group action of conjugation
of a group by itself. By the orbit stabilizer thoerem, the orders of these
conjugacy classes will divide the order of the group.

b) If G is Abelian, we are done. Otherwise, Z(G) is a proper subgroup of

G. The order of Z(G) is then at most |G|
2 by Lagrange’s theorem. Every

element in the center constitutes its own conjugacy class. We then have
|G|
2 other elements, which are divided into conjugacy classes of size at least

2. These elements can then be divided into at most |G|
4 conjugacy classes.

Adding these numbers, we see that a non abelian group G has at most
|G|
2 + |G|

4 = 3|G|
4 conjugacy classes.

Problem 9

We know that a group action partitions a set into distinct orbits. Thus:

|X| =
∑

Xi⊆X

|Xi|

We see that |Xi| must be some power of p, by the Orbit-stabilizer theorem and
Lagrange’s theorem, as stabilizers must be powers of p as they are subgroups
and must divide the order of |G| which is pk. An power of p divided by a power
of p yields a power of p. We turn to the elements in question, whose orbit is only
itself, and therefor its stabilizer the whole group. Thus, we see we can factor
out p from the order of the orbit of any element which is not stabilized by the
whole group. We then have

|X| = 1 + · · ·+ 1 + pk

for some k ∈ Z. The number of 1s will be the number of elements who are
stabizlied by the whole group. Thus, we have shown that |X| is congruent to
this number mod p.
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