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Problem 1
a) We find the irreducible polynomial of /2 + v/2:

=\/2+V2
2 —2=12
ot —42? +2=0
2

This polynomial is irreducible via Eisenstein choosing p = 2. We can find its roots by letting y = x~,
giving us y? — 4y + 2 = 0. After plugging this into the quadratic formula, we get y = 2 4 v/2, and hence

the conjugates of /2 + V2 in C are £1/2 + v/2.

We claim that 2% — (2++/2), which has \/ 2 + V2 as a root is 1rredu01ble over Q(+v/2). This is because from

part a we have that [Q(v/2+v2: Q] = [Q(v2 + v2: Q(v2)][Q(v2) : Q] = 4 and since [Q(v/2) : Q] has
degree 2, [Q(v/2 4+ V2 : Q(v2)] = 2 and therefore the polynomlal is irreducible and the conjugates are

+/2 + /2.

We can find the minimal polynomial by multiplying the linear factors (z — (v/2+1i))(z — (v/2 —i)) to get
the minimal polynomial 22 — 21/2x + 3 over the reals, the conjugates are clearly v/2 4 4,v/2 — i.
We have:
V2+i=uz
2V2i =a? — 1

—8=at 222 +1
0=a'—22"+9
We must show that this polynomial is irreducible. Notice that v/2,i € Q(v/2 + i) and thus [Q(v/2 + ) :

Q] > [Q(V2,1)] = [Q(V2,1) : Q(+v/2)][Q(v/2) : Q]. But this is 4, by the known polynomials 22 4+ 1 and
22 — 2. Thus, the degree of [Q(v/2 + i) : Q] is 4 and therefore this polynomial is irreducible. using the

quadratic formula we get that the conjugates are £4/1 4+ 2y/—2



Problem 2

a) Consider arbitrary o € G(K/F). Let k1,ks € K. The properties of an automorphism (ismorphism
(homomorphism)) mean that:
O'(kjl + k2) = 0'(/451) + O'(k’g)

and also for a € F), since o fixes a,
o(aky) = o(a)o(ki) = ao(ky)

thus, we have filled the properties of a linear map. Also, since G(K/F) is a group, every map o has
an inverse map o', which is also a linear transformation by the same argument. THus, every o is an
invertible linear map.

b) Consider the field extension Q C R. Consider the linear map x — 2x. This can easily be verified to be a
linear map, but it does not fix elements in Q and thus cannot be an automorphism over it.

1 0 0 0
01 00
0 0 01
1 0 0 0]
0 -1 0 O
0 0 1 0 :<(1a0)>
0 0 0 —1]
[1 0 0 0]
01 0 0
00 -1 o=
0 0 0 —1]
[1 0 0 O]
0 -1 0 O
0 0 0 1]

Problem 3

a) We know that . is the set of roots of zP" — x € F,[z]. Hence, we know that 0" (z) = 2" = x which is
the identity permutation. Suppose that 2?" = z for some k < n. But this implies that 2P 1 = 1 for all
x € F*, which would imply that F* is not cyclic, which is a contradiction. Thus, the order of ¢ is n and
therefore it generates a cyclic group isomorphic to Z,,.

b) We know that |G(F} /F,)| = [F} : Fp] = [(F,)" : F],] = n. This is true because |Fy| = |(F,)"| implies
that ) = (F,)™ as they are finite fields. Thus, since the order of the Galois group is n and we have found
an element that generates a group of order n, G(Fy /F,) = Zj.



Problem 4

a)

b)

Let us consider K as a vector space over F. Notice that F(ay) has a basis {1,ay,...,a;" 71}, and
therefore F'(aq, az) has a basis

—1 —1 —1 -1 -1 -1
ko 2 2 2 2 ko k1 k1 2 k1 O/ZCQ }

ka—1 2
{lag,...,05° " L1092, 0105, ..., Q1052 ", 0700, 0705, ..., 0705° .. 00 Tag, 0yt G, ..., 0f

We can continue this up to F(ag,...,a,). Thus we see that any element k& € K can be expressed
as a linear combination of these basis elements and scalars in F. Since o must fix F, and o(a’) =
o(a)---o(a) (i times) = o%(a), for any a,i € Z we see that o(k) is determined by the values of
olar),...,o(ay) for all k € K.

Consider the 5th roots of unity and the permutation o that maps ¢* — ¢2,¢2 — ¢5 3 — 3, ¢4 — ¢4
These roots are conjugate but it is an invalid permutation because ¢! — ¢2 determines that ¢? — ¢*.

Problem 5

a)

d)

The roots of 2P — 1 are R = {1(¢°),¢, ..., (P71}, Since o must permute these roots, o(¢) € R. However,
a(¢) # ¢° = 1 as otherwise for some rational number = € Q, o(z) = o(x - 1) = o(x - (*) = 2¢* ¢ Q for
some k # 0 and if o does not fix the rationals it is not an isomorphism over them.

Suppose k = 1. Then o(¢) = ¢ and thus o(¢?) = o(¢)---0(¢) (i times) = (* which is the identity
permutation.

This is true because since p is prime, kx, for some k € 1,...,p — 1 multiplied by all valuesin 1,...,p—1
gives a unique permutation.

We observe that |G(Q(¢)/Q)] =n —1 as o(¢) has n — 1 possible values and the value of ¢({) determines
o as 0(¢") = 0'(¢). Let o be the isomorphism that sends ¢ to ¢*. Let ¢ : G(Q(()/Q) — Zj, ¢(c*) = k.
Let us show that this is an isomorhpism. For k,¢ € Z, (o’ o 0*) = ¢p(c**) = ¢(a** ™4 P) = kl mod p =
#(o*) - p(a?). Also, as we showed in part ¢ k can take values 1,...,n — 1 which are exactly those elements
in Zj, so it is onto and since the groups have same order it is one-to-one. Thus the groups are isomorphic.

Problem 6

a)

b)

c)
d)

The extensions are determined to where v/2 gets mapped. Since V/2 is a root of the irreducible polynomial
2% — 2, we can either map V2 to v/2 or —v/2 and this determines the extension.

If in the lower extesnsion, v2 — v/2, then /2 + v/2 — £v/2 + v/2. Otherwise, /2 + V2 — +v/2 — /2.

Problem 7

)

This induces an isomorphism & (a,x™ + -+ + ag) = o(an)z™ + - -+ 4+ o(ag). Let us prove that this is an
isomorphism. Take a,x™ + --- 4+ ag, bpx™ + - - - + by and wlog let n > m.

Flanz™ + -+ (am + o)™ + -+ (a0 + bo)) = o(an)z™ + -+ (am + bm)z™ + - - + o(ag + bo)
Since ¢ is an isomorphism:

Flanz™ 4+ 4 (am+bm)x™ +-- -+ (ag+bo)) = o(ap)z" 4+ -+ 0o(am)x™ +o(bp)z™ 4+ -+ 0(ap) +(bo)



=o(ap)z"+ --+o(am)x™+--+o(ag)+0(bp)z™ +---+0(by) =(anx" +---+ag)+7(bpz™ +---+bo)

Also:
F((anx™ 4+ -+ ag)(bpax™ + -+ +by)) = 0(anbpx™ ™) + - 4+ a(agbo)

= 0(an)o(bm)x™ ™) + -+ a(ag)o(bo) = G(ana™ + - 4 ag)a (bma™ + - - - + bo)

The map is onto as for any polynomial a,,x™+- - -+ag € L[z] there exists a polynomial f(z) = o~ (a,)z"+
<-4+ 07 (ag) € K[z] such that 5(f(x)) = anz™ + -+ + ag. Also, suppose that 5(a,z™ + -+ + ag) =
7 (bmax™ + -+ - 4+ bg) Then:

olap)z™ + -+ o(ag) = o(bm)x™ + -+ -+ o (bm)
and thus we can conclude that n = m and b; = a; for a € {0,1,...,m}. So it is an isomorphism.

Let f(z) be an irreducible polynomial in K. Suppose that a(f(z)) is reducible, i.e. &(f(z)) = g(z)h(z),
g(x), h(x) € L[z],deg(g(x)),deg(h(x)) < deg(a(f(x))). But then:

fl) =071 @(f(2))) = 6~ (g(x)h(x)) = 07" (g(2))a ™" (h(x))

and since the isomorphism preserves the degree of polynomials we have shown that f(z) is reducible in
K|z] which is a contradiction. The other direction is trivial, if f(z) € K[z] reduces to g(x)h(z) then
a(f(x)) clearly reduces to a(g(x))a(h(z)).

We observe that for the diagram to be commutative, for € K, 7(z) = o(z). This inspires the following
isomorphism. Given a simple field extension K («), we have that every y € K(a) can be uniquely written
as ag +aja+ -+ +a,_1a" 1 where n = deg(irr(a, K)) and a; € K. We claim that for any root 3 of the
polynomial &(f(x)), L(f) is isomorphic to K («) under

T(ap + ara+ -+ ap_10" ) = o(ag) + o(a))B+ -+ o(an_1)" "

This isomorphism holds because

and isomorphism is transitive.



