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Problem 1
a) We find the irreducible polynomial of

√
2 +

√
2:

x =

√
2 +

√
2

x2 − 2 =
√
2

x4 − 4x2 + 2 = 0

This polynomial is irreducible via Eisenstein choosing p = 2. We can find its roots by letting y = x2,
giving us y2 − 4y + 2 = 0. After plugging this into the quadratic formula, we get y = 2±

√
2, and hence

the conjugates of
√
2 +

√
2 in C are ±

√
2±

√
2.

b) We claim that x2−(2+
√
2), which has

√
2 +

√
2 as a root is irreducible over Q(

√
2). This is because from

part a we have that [Q(
√
2 +

√
2 : Q] = [Q(

√
2 +

√
2 : Q(

√
2)][Q(

√
2) : Q] = 4 and since [Q(

√
2) : Q] has

degree 2, [Q(
√
2 +

√
2 : Q(

√
2)] = 2 and therefore the polynomial is irreducible and the conjugates are

±
√
2 +

√
2.

c) We can find the minimal polynomial by multiplying the linear factors (x− (
√
2+ i))(x− (

√
2− i)) to get

the minimal polynomial x2 − 2
√
2x+ 3 over the reals, the conjugates are clearly

√
2 + i,

√
2− i.

d) We have: √
2 + i = x

2
√
2i = x2 − 1

−8 = x4 − 2x2 + 1

0 = x4 − 2x2 + 9

We must show that this polynomial is irreducible. Notice that
√
2, i ∈ Q(

√
2 + i) and thus [Q(

√
2 + i) :

Q] ≥ [Q(
√
2, i)] = [Q(

√
2, i) : Q(

√
2)][Q(

√
2) : Q]. But this is 4, by the known polynomials x2 + 1 and

x2 − 2. Thus, the degree of [Q(
√
2 + i) : Q] is 4 and therefore this polynomial is irreducible. using the

quadratic formula we get that the conjugates are ±
√
1± 2

√
−2
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Problem 2
a) Consider arbitrary σ ∈ G(K/F ). Let k1, k2 ∈ K. The properties of an automorphism (ismorphism

(homomorphism)) mean that:
σ(k1 + k2) = σ(k1) + σ(k2)

and also for a ∈ F , since σ fixes a,

σ(ak1) = σ(a)σ(k1) = aσ(k1)

thus, we have filled the properties of a linear map. Also, since G(K/F ) is a group, every map σ has
an inverse map σ−1, which is also a linear transformation by the same argument. THus, every σ is an
invertible linear map.

b) Consider the field extension Q ⊂ R. Consider the linear map x → 2x. This can easily be verified to be a
linear map, but it does not fix elements in Q and thus cannot be an automorphism over it.

c) 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = 〈(0, 0)〉


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 = 〈(1, 0)〉


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 = 〈(0, 1)〉


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 = 〈(1, 1)〉

Problem 3
a) We know that Fpn is the set of roots of xpn − x ∈ Fp[x]. Hence, we know that σn(x) = xpn

= x which is
the identity permutation. Suppose that xpk

= x for some k < n. But this implies that xpk−1 = 1 for all
x ∈ F∗, which would imply that F∗ is not cyclic, which is a contradiction. Thus, the order of σ is n and
therefore it generates a cyclic group isomorphic to Zn.

b) We know that |G(Fn
p/Fp)| = [Fn

p : Fp] = [(Fp)
n : F]p] = n. This is true because |Fn

p | = |(Fp)
n| implies

that Fn
p
∼= (Fp)

n as they are finite fields. Thus, since the order of the Galois group is n and we have found
an element that generates a group of order n, G(Fn

p/Fp) ∼= Zn.
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Problem 4
a) Let us consider K as a vector space over F . Notice that F (α1) has a basis {1, α1, . . . , α1

k1−1}, and
therefore F (α1, α2) has a basis

{1, α2, . . . , α
k2−1
2 , α1α2, α1α

2
2, . . . , α1α

k2−1
2 , α2

1α2, α
2
1α

2
2, . . . , α

2
1α

k2−1
2 , . . . , αk1−1

1 α2, α
k1−1
1 α2

2, . . . , α
k1−1
1 αk2−1

2 }

We can continue this up to F (α1, . . . , αn). Thus we see that any element k ∈ K can be expressed
as a linear combination of these basis elements and scalars in F . Since σ must fix F , and σ(αi) =
σ(α) · · ·σ(α) (i times) = σi(α), for any α, i ∈ Z we see that σ(k) is determined by the values of
σ(α1), . . . , σ(αn) for all k ∈ K.

b) Consider the 5th roots of unity and the permutation σ that maps ζ1 → ζ2, ζ2 → ζ1, ζ3 → ζ3, ζ4 → ζ4.
These roots are conjugate but it is an invalid permutation because ζ1 → ζ2 determines that ζ2 → ζ4.

Problem 5
a) The roots of xp − 1 are R = {1(ζ0), ζ, . . . , ζp−1}. Since σ must permute these roots, σ(ζ) ∈ R. However,

σ(ζ) 6= ζ0 = 1 as otherwise for some rational number x ∈ Q, σ(x) = σ(x · 1) = σ(x · ζ0) = xζk /∈ Q for
some k 6= 0 and if σ does not fix the rationals it is not an isomorphism over them.

b) Suppose k = 1. Then σ(ζ) = ζ and thus σ(ζi) = σ(ζ) · · ·σ(ζ) (i times) = ζi which is the identity
permutation.

c) This is true because since p is prime, kx, for some k ∈ 1, . . . , p− 1 multiplied by all values in 1, . . . , p− 1
gives a unique permutation.

d) We observe that |G(Q(ζ)/Q)| = n− 1 as σ(ζ) has n− 1 possible values and the value of σ(ζ) determines
σ as σ(ζi) = σi(ζ). Let σk be the isomorphism that sends ζ to ζk. Let φ : G(Q(ζ)/Q) → Z∗

p, φ(σk) = k.
Let us show that this is an isomorhpism. For k, ` ∈ Z, φ(σ` ◦ σk) = φ(σk`) = φ(σk` mod p) = kl mod p =
φ(σk) ·φ(σ`). Also, as we showed in part c k can take values 1, . . . , n−1 which are exactly those elements
in Z∗

p so it is onto and since the groups have same order it is one-to-one. Thus the groups are isomorphic.

Problem 6
a) The extensions are determined to where

√
2 gets mapped. Since

√
2 is a root of the irreducible polynomial

x2 − 2, we can either map
√
2 to

√
2 or −

√
2 and this determines the extension.

b) If in the lower extesnsion,
√
2 →

√
2, then

√
2 +

√
2 → ±

√
2 +

√
2. Otherwise,

√
2 +

√
2 → ±

√
2−

√
2.

c)

d)

Problem 7
a) This induces an isomorphism σ̄ (anx

n + · · ·+ a0) = σ(an)x
n + · · · + σ(a0). Let us prove that this is an

isomorphism. Take anx
n + · · ·+ a0, bmxm + · · ·+ b0 and wlog let n ≥ m.

σ̄(anx
n + · · ·+ (am + bm)xm + · · ·+ (a0 + b0)) = σ(an)x

n + · · ·+ σ(am + bm)xm + · · ·+ σ(a0 + b0)

Since σ is an isomorphism:

σ̄(anx
n+ · · ·+(am+ bm)xm+ · · ·+(a0+ b0)) = σ(an)x

n+ · · ·+σ(am)xm+σ(bm)xm+ · · ·+σ(a0)+σ(b0)
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= σ(an)x
n+ · · ·+σ(am)xm+ · · ·+σ(a0)+σ(bm)xm+ · · ·+σ(b0) = σ̄(anx

n+ · · ·+a0)+ σ̄(bmxm+ · · ·+b0)

Also:
σ̄((anx

n + · · ·+ a0)(bmxm + · · ·+ b0)) = σ(anbmxm+n) + · · ·+ σ(a0b0)

= σ(an)σ(bm)xm+n) + · · ·+ σ(a0)σ(b0) = σ̄(anx
n + · · ·+ a0)σ̄(bmxm + · · ·+ b0)

The map is onto as for any polynomial anxn+· · ·+a0 ∈ L[x] there exists a polynomial f(x) = σ−1(an)x
n+

· · · + σ−1(a0) ∈ K[x] such that σ̄(f(x)) = anx
n + · · · + a0. Also, suppose that σ̄(anx

n + · · · + a0) =
σ̄(bmxm + · · ·+ b0) Then:

σ(an)x
n + · · ·+ σ(a0) = σ(bm)xm + · · ·+ σ(bm)

and thus we can conclude that n = m and bi = ai for a ∈ {0, 1, . . . ,m}. So it is an isomorphism.

b) Let f(x) be an irreducible polynomial in K. Suppose that σ̄(f(x)) is reducible, i.e. σ̄(f(x)) = g(x)h(x),
g(x), h(x) ∈ L[x], deg(g(x)), deg(h(x)) < deg(σ̄(f(x))). But then:

f(x) = σ̄−1(σ̄(f(x))) = σ̄−1(g(x)h(x)) = σ̄−1(g(x))σ̄−1(h(x))

and since the isomorphism preserves the degree of polynomials we have shown that f(x) is reducible in
K[x] which is a contradiction. The other direction is trivial, if f(x) ∈ K[x] reduces to g(x)h(x) then
σ̄(f(x)) clearly reduces to σ̄(g(x))σ̄(h(x)).

c) We observe that for the diagram to be commutative, for x ∈ K, τ(x) = σ(x). This inspires the following
isomorphism. Given a simple field extension K(α), we have that every y ∈ K(α) can be uniquely written
as a0 + a1α+ · · ·+ an−1α

n−1 where n = deg(irr(α,K)) and ai ∈ K. We claim that for any root β of the
polynomial σ̄(f(x)), L(β) is isomorphic to K(α) under

τ(a0 + a1α+ · · ·+ an−1α
n−1) = σ(a0) + σ(a1)β + · · ·+ σ(an−1)β

n−1

This isomorphism holds because

K(α) ∼= K[x]/f(x) ∼= σ̄(L[x]/f(x)) = L[x]/irr(β, L) ∼= L(β)

and isomorphism is transitive.
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