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Problem 1

a) First, it is clear that the identity e is in NG(H), as eHe = H. Also, if g ∈
NG(H), we have that gHg−1 = H, and then after algebraic manipulation, we
get H = g−1Hg, which implies that g−1 ∈ NG(H). Finally, if g, k ∈ NG(H),
we have that gHg−1 = H, kHk−1 = K. We then have gkHk−1g−1 =
gHg−1 = H, which implies that gk ∈ NG(H), which shows that the subgroup
is closed.

b) Let X be the set of p−subgroups in G, under the action of conjugation.
We know the action is well defined because, conjugating a subgroup by the
identity gives that subgroup back and the associativity comes from the fact
that the multiplication of group elements is associative. We have that H ∈
X. By the second Sylow Theorem, we know that Orb(H) = X. We also
have that Stab(H) = NG(H). From this, we have that

|X| = |Orb(H)| = |G|
|NG(H)|

= [G : NG(H)]

This tells us that [G : NG(H)] is equal to |X|, meaning it is equal to the
number of p−subgroups in G.

c) We know that H ∈ NG(H), because conjugation of a group by an element in
the group is an automorphism. So H is a p−subgroup of NG(H). Suppose
another p−subgroup K ∈ NG(H), K ̸= H. Then aHa−1 = K for some
a ∈ NG(H), by the 3rd Sylow theorem. But aHa−1 = H. Contradiction.
Thus H is unique.

Problem 2

a) The prime factorization of
∣∣∣(Z2023)

2023
∣∣∣ is (172 · 7)2023. We know that sylow

p−subgroups of orders 174046 and 72023 exist, and that they will all be con-
jugate to eachother. But since the group is Abelian, a p−subgroup can only
conjugate to itself. Therefore, there will be only 2 p-subgroups.
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b) We have that the prime factorization of |S4| is 3 · 23. So our p-subgroups
have order 3 or 8. We first examine the p subgroup of order 3. We contend
that there are 4 such subgroups, ⟨(1 2 3)⟩, ⟨(1 2 4)⟩, ⟨(1 3 4)⟩, ⟨(2 3 4)⟩. This
makes sense as 1 is congruent to 4 mod 3, and because 4 divides 23. Since
the p-subgroups constitute an orbit under the group action of conjugation
of subgroups, and the order of orbit must divide the order of the group, we
see that there cannot be 7, 10, 13, 16, 19, or 22 subgroups of order 3.

Next, we move to the subgroups of order 23. We contend that 3 such sub-
groups exist. First, we know that there cannot exist only 1 such subgroup,
as this would imply that the subgroup of order 8 is normal. This cannot be
true, as a normal subgroup is a union of conjugacy classes, and the conjugacy
classes of S4 have orders 6, 8, 3, 6, and 1. There is no way to add these num-
bers while including the identity and reaching a set of order 8. Also, since
the p-subgroups constitute an orbit under the group action of conjugation of
subgroups, and the orbit must divide the order of the group, we observe that
5, 7, 9, · · · 23 do not divide 24, the order of the group. So 3 such subgroups
exist.

c) We have that the prime factorization of |A5| = 60 = 22 · 3 · 5. We first find
how many subgroups of order 22 = 4 exist. We contend that there are 5
subgroups, and that these subgroups are isomorphic to the Klein-4 group,
and that their normalizers are subgroups of A5 isomorphic to A4.

We then turn to the subgroups of order 3. By Sylow-3 we know that be 1,
4, or 10 subgroups of order 3, as these are the numbers that are congruent
to 1 mod 3, and also divide 20. We know that there cannot only be 1, as
this would imply that there was a normal subgroup of order 3 in A5, which
cannot be the case, as A5 is simple. We contend that there are therefore 10
such subgroups, which are generated by 3-cycles in A5. We know that there
are 20 3 cycles in A5, by counting 5·4·3

3 , and they can be partitioned into
pairs along with the identity such as {Id, (1 2 3), (1 3 2)}, {Id, (1 2 4), (1 4 2)}
and so on. Since there are at most 10 subgroups of this order, we know that
we have found them all.

We then turn to the subgroups of order 5. We know that the number n
must be congruent to 1 mod 5 and also must divide 12. Thus, our only two
options are 1 or 6. But if there was only 1, this would imply a subgroup that
was only conjugate to itself by Sylow 2 and therefore normal. However this
would be a non-trivial normal subgroup which we know does not exist as A5

is simple. Thus, 6 such subgroups exist.

Problem 3

a) We know from Practice Midterm 2, Problem 5, that G is either abelian, or
G/Z(G) is not Abelian. Since Z(G) is a subgroup of |G|, by Lagrange’s
theorem, it has order 1, p, or p2. If it has order p, then G/Z(G) has order
p2/p, and is therefore cyclic, meaning that the group is Abelian, and therefore
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|Z(G)| = p2 ̸= p. So this cannot be the case. If it has order 1, by the class
equation we have that |G| = 1 + p(k), for some k ∈ Z, as was proven in
problem 9 on the last homework. But then the order of G is congruent to
1 mod p, when in reality the order of G is divisible by p contradiction. So
|Z(G)| = p2 and therefore |G| is Abelian. Since it is Abelian, and of order
p2, by the theorem of finitely generated Abelian groups we know that G is
isomorphic to either Zp2 or Zp × Zp.

b) Take p = 2, then p3 = 8. The group D4 has order 8 and is non-abelian.

Problem 4

a) Call X the set of conjugate p-subgroups and let the elements of H act on
them by conjugation. Suppose that for H1 = H,H2, H1 ̸= H2 ∈ X that
Stab(H1) = Stab(H2). This tells us that

hH2h
−1 = H2

for any h ∈ H. This tells us that H ≤ NG(H2). We also have that H2 is
normal in NG(H2) as it is contained in NG(H2), and for any hn ∈ NG(H2),
hnH2h

−1
n = H2. But then H, H2 are both p−subgroups in NG(H2) and

therefore must be conjugate. But since H2 is normal in NG(H2), this cannot
be the case unless H1 = H = H2. From this, we have that the orbit of any
element Hi ̸= H is

|H|
|Stab(Hi)|

But since Stab(Hi) ̸= H, we have that it must be a subgroup of H and then
can have order at most pk−1, where |H| = pk, by Lagrange’s theorem. Thus,
its orbit will be divisible by p.

b) We know that |X| is equal to the sum of the sizes of its orbits. By the result
obtained in (a), every orbit will be divisible by p, except for one orbit of
order 1. Thus:

|X| = 1 + p(Orb(H1)) + p(Orb(H2)) + · · · = 1 + p(k)

for some k and thus |X| is congruent to 1 mod p.

Problem 5

a) By Cauchy’s theorem, since 2 is a prime dividing the order of the group, 2p,
there exists an element b of order 2. Likewise, since p is a prime dividing the
order of the group, there exists an element a of order p.

b) The index of ⟨a⟩ = 2p/p = 2. This means there are 2 cosets in the quotient
group and thus the multiplication of either coset by an element not in it will
yield the other coset, whether the multiplication is on the left or the right.
Thus, from this we know that ⟨a⟩ is normal.
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c) Since ⟨a⟩ is normal in G, we know that

bab−1 = ak

for some k. Also, b−1 = b so
bab = ak

Then:
a = bakb

as we showed on midterm 1, this is equal to

a = (bab)k

but bab = ak so then
a = (ak)k

or
a = ak

2

thus, we have that k2 congruent to 1 mod p, which implies that k is congruent
to 1 or -1 mod p, meaning bab−1 is either a or a−1

d) When bab = a, we have ba = ab. Since ⟨a⟨ is normal, we have that G/⟨a⟩ =
{⟨a⟩, b⟨a⟩}. Thus, every element of G can either be written as a power of b
and a power of a. We observe recursively that

bak = baak−1 = abak−1 = · · · = akb

Thus, for any two elements x = bman, y = bℓak, m,n, ℓ, k ∈ Z, we have that

xy = bmanbℓak = bmakbℓan = bℓakbman = yx

Thus, bab = a implies that the group is abelian. From this, we know that by
the classification theorem of finite abelian groups that G must be isomorphic
to Z2p or Z2 × Zp.

Now the other case, bab = a−1, we have

(bab) = a−1

raise both sides to an arbitrary power k, giving

(bab)k = (a−1)k

bakb = (ak)−1

bak = (ak)−1b

which implies that
bak = (bak)−1

Thus, we have that every element in the coset b⟨a⟩ is its own inverse, i.e.
has order 2. From here, we can construct an isomorphism to Dp, where the
p rotations are the elements of ⟨a⟩, and the p reflections are the elements of
b⟨a⟩.
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Problem 6

a) We know that this group action is valid, as the identity matrix takes every
column vector to itself, and that the second axiom will also hold, as matrix
multiplication is associative, which gives us that (AB)x = A(Bx) where
A,B ∈ GLn(Fp), x ∈ (Fp)

n.

b) The two orbits are the zero vector, an orbit of all other vectors of size pn−1.
We know that any non zero vector can be reached from any other non zero
vector. This is because no non-zero vector is held constant by any matrix
other than the identity. Thus, the stabilizer of any vector has order 1 and
thus the orbit will be all the vectors.

c) We know that each element in GLn(Fp) constitutes a bijection from the set
of the non-zero column vectors to itself. This is because it is injective and
surjective. Let x, y be in the set of column vectors, and let M ∈ GLn(Fp).
Then if Mx = My, we can multiply by M−1 on both sides which we know
exists because M ∈ GLn(Fp). Also, for any column vector y, we know that
M(M−1y) = y, so it is also surjective. Thus, since each element of GLn(Fp)
constitutes a bijection from a set of pn − 1 elements to itself, there will be
a homomorphism ϕ : GLn(Fp) → Spn−1. We know that the kernel of this
homomorphism is just the identity matrix, which by the first isomorphism
theorem tells us that G is isomorphic to ϕ(G). Since a homomorphism maps
subgroups in one group to subgroups in another group, we know that ϕ(G)
is a subgroup of Spn−1, and by the first isomorphism theorem G isomorphic
to a subgroup in Spn−1.

d) See picture at https://imgur.com/a/eXbi0QV

Problem 7

a) see image at https://imgur.com/a/eXbi0QV

b) We see that each node in the graph has 3 edges emerging from it. We know
that this is also the maximum number of lines it can participate in as once
you linearly combine a vector with a second vector, the 3rd vector in the line
is implicitly defined. Thus, one vector can only participate in 3 lines.

c) We know that there are 7 lines. We also know that the order of the group
GL3(F2) is 168. From this, to show that the group action is transitive, we
must show that the stabilizer of a line L, Stab(L) has order 24, as Stab(L) ·
Orb(L) = |GL3(F2)| = 168. We choose the following line:

10
0

 ,

01
0

 ,

11
0


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We construct a matrix that sends each element in L to itself. This was done
by starting with every element in the matrix being free, and seeing that all
elements other than g and h must have a fixed value to send each element
in L to itself and also fulfill the . Thus, we observe that there are 4 matrices
which send L to itself as g and h can each be chosen in 2 ways.1 0 g

0 1 h
0 0 1


The next observation we made was that the action of the stabilizer on L is
essentially the permutations in S3. We then map the result from problem 6d
to get that: 0 1 g

1 1 h
0 0 1

 ∼= (L1 L2 L3)

1 1 g
1 0 h
0 0 1

 ∼= (L1 L3 L2)

0 1 g
1 0 h
0 0 1

 ∼= (L1 L2)

1 0 g
1 1 h
0 0 1

 ∼= (L1 L3)

1 1 g
0 1 h
0 0 1

 ∼= (L2 L3)

Since g and h can be chosen 4 ways for each of the 6 matrices, this gives us
a stabilizer that is 24 elements large. Thus,

7 = |Orb(L)| = 168

24
=

|GL3(F2)|
|Stab(L)|

. which implies that the group action is transitive.
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