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Exercise 1.3

Prove that 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2

For the base case, it is easy to see that 13 = 12. Inductively, suppose that this holds for 13 +23 + · · ·+n3 =
(1 + 2 + · · ·+ n)2. Then:

13 + 23 + · · ·+ n3 + (n+ 1)3
?
= (1 + 2 + · · ·+ n+ n+ 1)2 = ((1 + 2 + · · ·+ n) + (n+ 1))2

13 + 23 + · · ·+ n3 + (n+ 1)3
?
= (1 + 2 + · · ·+ n)2 + 2(n+ 1)(1 + 2 + · · ·+ n) + (n+ 1)2

By our inductive hypothesis we have:

(n+ 1)3
?
= 2(n+ 1)(1 + 2 + · · ·+ n) + (n+ 1)2

Employing

1 + 2 + · · ·+ n =
n(n+ 1)

2

(n+ 1)3
?
= n(n+ 1)2 + (n+ 1)2

Factoring yields:
(n+ 1)3 = (n+ 1)2(n+ 1) = (n+ 1)3

So this equality holds and thus we have:

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2

for all n ∈ N.

Exercise 1.8

a) Prove that n2 > n+ 1 for n ≥ 2

For our base case we have that 4 = 22 > 2 + 1 = 3. Suppose inductively that this holds for n. Then we
have that

(n+ 1)2
?
> (n+ 1) + 1

n2 + 2n+ 1
?
> (n+ 1) + 1

Inductively we have:
2n > 0

and since n is positive this inequality clearly holds.
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b) Prove n! > n2 for n ≥ 4

For our base case we have that 24 = 4! > 42 = 16. Consider the inequality

(n+ 1)! > (n+ 1)2

(n+ 1)! > n2 + 2n+ 1

Since n ≥ 4, and by our inductive hypothesis we have that

(n+ 1)! = (n+ 1)n! > 3n! > n2 + 2n+ 1

and since n ≥ 4 > 3, this inequality holds.

Exercise 1.9

Show that 2n > n2 for n ≥ 5

For the base case we have 32 = 25 > 52 = 25. Proceeding inductively:

2n+1 ?
> (n+ 1)2 = n2 + 2n+ 1

By our inductive hypothesis we have:

2n+1 ?
> 2n + 2

n
2 +1 + 20 > n2 + 2n+ 1

Factoring gives:

2n+1 ?
> 2n

(
1 +

1

2
n
2 −1

+
1

2n

)
> n2 + 2n+ 1 = (n+ 1)2

Since n ≥ 5

2n+1 = 2 · 2n = (1 +
1

2
+

1

2
) > 2n

(
1 +

1

21.5
+

1

25

)
> n2 + 2n+ 1 = (n+ 1)2

and this relation holds.

Exercise 2.3

Suppose that
√
2 +

√
2 is rational. We have that√

2 +
√
2 = x

√
2 = x2 − 2

2 = x4 − 4x2 + 4

so then this is a zero of the polynomial:

f(x) = x4 − 4x2 + 2

If this polynomial has rational zeroes, they are either ±1,±2. But f(±1) = −1, and f(±2) = 2. So since

this polynomial has no rational zeroes,
√
2 +

√
2 cannot be rational.
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Exercise 2.4

Suppose that
3
√
5−

√
3 is rational. Then

x =
3

√
5−

√
3

x3 − 5 = −
√
3

x6 − 10x3 + 25 = 3

and
3
√
5−

√
3 is a zero of f(x) = x6 − 10x3 − 22 Then the rational zeroes of this polynomial must

±1,±2,±11,±22. We have f(1) = −31, f(−1) = −11. Also,

f(2) = 2(25 − 10 · 22 − 11)

and since (25−10 ·22−11) is odd it is not zero and hence f(2) ̸= 0. f(−2) ̸= 0 by the same argument. Also,

f(11) = 116 − 10 · 113 − 22

f(11) = 116 − 2(5 · 113 − 11)

Observe that −2(5 · 113 − 11) is even and 116 is odd. Thus f(11) is odd and therefore not zero. A similar
argument follows for f(−11). Also,

f(22) = 226 − 10 · 223 − 22 = 22(225 − 10 · 222 − 11)

Observe that 225 − 10 · 222 − 11 is odd and hence not zero. Thus the product of 22 and something that is
not zero cannot be zero and we have that f(±22) ̸= 0. Hence, this polynomial has no rational roots and

thus
3
√
5−

√
3 is irrational.

Exercise 2.7

a) Let x =
√

4 + 2
√
3−

√
3. Then

x+
√
3 =

√
4 + 2

√
3

x2 + 2
√
3x+ 3 = 4 + 2

√
3

Observe that this holds for x = 1. Thus x =
√

4 + 2
√
3−

√
3 = 1 ∈ Q and this number is rational.

b) Let x =
√

6 + 4
√
2−

√
2. Then

(x+
√
2)2 = 6 + 4

√
2

x2 + 2
√
2x+ 2 = 6 + 4

√
2

Observe that this holds for x = 2, and thus
√
6 + 4

√
2−

√
2 = 2 ∈ Q.
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